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Abstract 

This thesis examines process planning for rapid die tooling.  Sheet metal die tooling 

typically requires long lead times from design to manufacturing.  Rapid manufacturing of 

die tooling is a method that reduces lead times by minimizing the process planning time.  

This research focuses on the process planning algorithm for laminated die manufacture to 

automatically provide adequate interlaminate strength using a minimum number of 

fasteners.   

A mechanical model was developed for predicting shear and compressive forces during 

sheet metal bending was developed as an input to a bolt and dowel pin algorithm.  An 

algorithm is described for proper placement of bolts and dowel pins per each slice layer to 

satisfy the mechanical model.  The impact of this research will allow for proper design to 

achieve mechanical requirements of die tooling in a rapid manufacturing technology.
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Chapter 1.  Introduction 

Sheet Metal Forming Overview 

Sheet metal products are important in a variety of industries, including automotive and 

aerospace.  Components formed from sheet metal can be strong, lightweight, and quite 

inexpensive in large volumes.  Furthermore, it is relatively simple to achieve complex 

surface geometries without increasing processing costs. 

Sheet metal is considered to have thicknesses between 0.4 mm (1/64 in.) and 6 mm (1/4 in.) 

(Groover, 2002).   Sheet metal rolls are typically produced by hot or cold rolling.  Geometry 

created from sheet metal rolls (both in-plane and out-of-plane) can be generated through a 

number of processes: punching, bending, and drawing.   

Punching is an operation where in-plane geometry is created by selective removal, Figure 1.  

The primary mechanism of punching is shearing, where the perimeter of the metal undergoes 

extremely high stresses until it yields and separates. 

 

Figure 1. Punching operation (Groover, 2002) 

Drawing is a common sheet metal operation for applications such as beverage cans, 

ammunition shells, sinks, cooking pots, and automobile body panels (Groover, 2002).  The 

sheet metal is placed over a die.  A punch pushes the sheet metal into the die to form the 

desired geometry.  The mechanisms of plastic deformation are both bending and stretching, 

though the complicated 3-dimensional nature of the process makes these modes much more 

difficult to model and understand than pure shearing or simple bending. 
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Figure 2. Deep drawing operation (Groover, 2002) 

Bending deforms sheet metal around a straight axis (Groover, 2002).  Bending deforms the 

flat sheet metal through v-bending or edge bending.  The primary mechanism of bending is 

plastic deformation within a limited region.  A common problem with bending is springback 

of the sheet metal due to lagging in the plastically deformed zone (Groover, 2002).   

 

Figure 3. Bending operation (Groover, 2002) 

Drawing is often the most complex of sheet metal forming.  While certain regions of the 

sheet are stretched, compressive buckling causes wrinkling of the final product in other 

regions.  If stretched too far, the sheet may tear due to high tensile strains from metal 

thinning.   

Regardless of the process, sheet metal is formed by some type of die tooling.  While dies are 

often large and expensive, their cost is amortized over a high number of final products, 

making them an economical way of shaping high volumes of sheet metal parts.   Tool and die 
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materials often include steels, carbides, and ceramics (Metals, 1982) and have a high surface 

hardness – Rockwell C 60 or higher (Metals, 1982) – in the interests of long tool life.  The 

die tooling is typically fabricated by machining a bulk material and post-process surface 

grinding.  Because of the aforementioned process defects, several iterations of the die tooling 

may be required to obtain correct defect-free sheet metal geometry in the final product 

(Walczyk & Hardt, 1999). 

Such as with most tooling, high cost and time is required in design and fabrication of die 

tooling.  Die tooling failures can arise from poor designs.  Sharp corners, poorly located 

grooves, abrupt changes in section, thin walls, and improper clearances are undesirable 

designs in dies that could result in poor sheet metal forming (Metals, 1982).  

Rapid Manufacturing Die Tooling 

Developing the correct die the first time is difficult due to the many design considerations.  

This makes die tooling a good candidate for rapid manufacturing.  Rapid manufacturing 

reduces the process of manufacturing a part or tool to a fundamental means, such that the part 

or tool can be carried out quickly, reliably, and economically.  Rapid manufacturing reduces 

this to a fundamental state that will repeatedly work.   

Rapid manufacturing technology has evolved from three building processes: additive, 

subtractive, and hybrid.  Traditional rapid manufacturing, which emerged in the late 1980’s, 

built 3D models from an additive process.  A 2D cross-sectional slice of the 3D model is 

evaluated for material deposition.  Slices are built layer by layer producing an additive 

process.  Subtractive process is used in CNC machining (or other material removal 

processes) where material is removed from the stock material.  Hybrid processes use 

combinations of additive and subtractive processes.  One type of hybrid process involves 

material layers placed similar to the additive process and the excess material is removed from 

the layer by use of tooling similar to the subtractive process.  Each type of process step has 

its own advantages; additive process steps give extreme flexibility in geometry, while 

subtractive process steps can help achieve excellent tolerances and surface finishes, Figure 4. 
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Figure 4. Hybrid process of machining geometry layer by layer 

Recent literature has emerged to rapidly produce die tooling (discussed in further detail in 

Chapter 2).  Both additive and hybrid approaches have been utilized.  In general, additive 

approaches struggle to achieve sufficient interlaminate strength and often require complete 

surface machining or grinding.  Some success has been shown with hybrid processes, though 

problems arise in interlaminate strength, layer registration, and assembly methods.   

Laminated Die Motivation 

Time and cost are the two primary drivers for rapid manufacturing.  Hybrid rapid 

manufacturing of die tooling specifically addresses these two advantages.  By decomposing 

die tooling into discrete layers and later joining them by mechanical means, advantages are 

realized both through the individual layers and the nature of assembly.   

Decomposing dies into layers allows material-based advantages.  First, stock material can be 

chosen that is large enough to manufacture a single layer, rather than being restricted to a 

large piece of stock that contains the largest dimension of the die.  Second, a layer scheme 
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allows the designer to use different materials for each layer.  Rather than machining the 

entire die tooling from a single hard material, the designer can specify non-critical layers as a 

less expensive and more machinable material.  

Layer decomposition allows for simpler CNC machinery and process planning.  Die tooling 

can have deep geometry, which can require long tools or multi-axis machines to manufacture 

as one piece.  These factors increase cost and machining difficulties (i.e. chatter, machine 

stiffness, accuracy).  In a layer-based strategy, each layer can be machined independently, 

allowing use of inexpensive three axis CNC mills and short, rigid tools. 

The lead time to manufacture a layer-based die could be much shorter than that to 

manufacture a solid die.  Outsourcing dies often require several weeks of lead time (Walczyk 

& Hardt, 1999).  Shorter lead times are achieved through simple and robust process planning 

and the potential for parallel processing.  The layered process has the ability to make 

different layers on different machines at the same exact time and assemble afterwards.  The 

ability to send a 3D model of the die tooling to a CNC mill and receive final die tooling 

greatly shortens the time to manufacturing.   

Finally, by mechanically joining layers, die tooling can be easily disassembled.  This allows 

replacement of a single layer if it wears prematurely, or redesign and remanufacture of 

individual layers during iterations through process development.  Bolt joining is a method 

that is versatile to different materials.  Additionally, pins can be utilized for layer registration 

by aligning each layer. 

Of the primary sheet metal forming operations, the presented work focuses on modeling 

stamping as a bending operation.  Punching has nearly vertical forces which results in very 

little shear force and high compressive force acting on the die tooling.  Drawing dies are 

rather simple and often symmetric.  Bending operations are interesting in that it bends sheet 

metal at a point of contact that can create shear and compressive force off-balance.  The off-

balance in force components creates interesting process planning for interlaminate strength.     
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Thesis Objective 

The objective of this research is to develop a process planning method for laminated die 

manufacture to automatically provide adequate interlaminate strength using a minimum 

number of fasteners.  Based on inputs of die geometry, predetermined layer thickness, die 

material properties, predetermined hardware size, and sheet metal properties, the algorithms 

provided by this research will output specific bolt and dowel pin locations. 

Constraints defined by Walczyk and Hardt state that laminated die tooling requirements 

include layer registration, layer bonding, interlaminate strength, disassembly, and automation 

(Walczyk & Hardt, 1998).  To this end, one component of this research is the development of 

a model for determining interlaminate forces during sheet metal bending.    

Thesis Scope 

This research focuses entirely on dies for bending (as opposed to shearing or drawing).  

Laminated die architecture of horizontal layers, joined by dowel pins and bolts, is assumed in 

this work.  By utilizing dowel pins and bolts, holes can be automatically drilled and reamed 

or tapped in the same CNC mill that creates each layer, satisfying the “automation” 

requirement for laminated die tooling.  Further, the use of these two types of hardware allows 

easy disassembly of the die.  By using at least two pins between each layer, the registration 

of each will be fully defined, and by using an appropriate number of bolts, the layers will be 

properly bonded to resist gravitational forces.  Finally, by adding additional pins or bolts, the 

interlaminate strength during stamping can be adjusted.  Thus, this configuration allows 

meeting each of the requirements for laminated tooling. 

The presented work assumes that the die geometry, layer locations, hardware geometry, and 

sheet metal properties are predetermined.  Since only bending dies are considered, the force 

analyses are justified in not considering the shearing or stretching of the sheet metal. 

Thesis Organization 

Chapter 2 provides a literature review of bulk and discrete methods for die tooling 

manufacturing.  The review demonstrates the need for stiff, rapid die tooling.  Chapter 3 
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presents the research problem.  Chapter 4 presents original work in determining and 

overcoming the force and moment requirements for die tooling during sheet metal bending.  

Chapter 5 presents original work for bolt and layer placement in the previously described 

model.  Chapter 6 is a case study of the original work.  Chapter 7 is a discussion and future 

direction for the presented work.  
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Chapter 2.  Literature Review 

Previous endeavors into ‘rapid’ die tooling have generally followed two paths:  (1) bulk tool 

manufacture and (2) discrete layer manufacture.  The next two sections present the state of 

art in each area. 

Bulk Tool Manufacture 

Bulk tool manufacture results in a single contiguous piece of tooling.  Permanently joining 

the layers via welding, brazing, or epoxy ensures adequate surface smoothness and 

interlaminate strength.  Other methods consider sintering powder to develop the net-shape 

geometry. 

One proposed method is to create a mold to cast die tooling.  Casting die tooling is highly 

effective to replicate die geometry.  Du et al. proposes an indirect method for rapidly 

producing die tooling from existing rapid prototyping methods (Du, Chua, Chua, Loh-Lee, & 

Lim, 2002).  First, the female die half is made via stereolithography (SLA), selective laser 

sintering (SLS), or high speed CNC milling (Du, Chua, Chua, Loh-Lee, & Lim, 2002).  Next, 

a negative of the geometry is cast into silicone rubber molds.  Finally, vacuum casting was 

used to create a final tool in aluminum epoxy.  Although authors note this method would not 

be adequate for mass production tooling due to the weak mechanical cast metal properties, 

the application of existing rapid manufacturing technologies were shown to create successful 

dies for low volume applications (Du, Chua, Chua, Loh-Lee, & Lim, 2002).   

Rather than developing a mold, other researchers developed methods of directly depositing 

material to create solid die tooling.  Hybrid-layered manufacturing (HLM) is a welding 

process that produces a near net-shaped layer and mills the desired geometry when complete 

(Akula & Karunakaran, 2006).  HLM uniquely deposits direct metal onto each layer using 

existing technology.  The HLM process for developing die tooling has several benefits 

compared to other existing rapid prototyping technologies capable of depositing metal – 

selective laser sintering (SLS) and 3-D printing (3DP).  HLM is able to achieve better surface 

finish than SLS and 3DP because the final die is viewed as ‘one slice.’  The stair-stepped 
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surface is removed in the last process step whereas SLS and 3DP have a stair-stepped 

surface.  Akula noted that desired die tooling material properties could not be attained by the 

welding process. 

Discrete Layer Manufacture 

Over the past 70 years, research has ventured into laminated tools.  Laminated layer tools 

apply to many different applications.  One of the first inventors to patent a layer-based mold 

to reproduce and reconfigure shoe soles appeared in 1942 (Hart, 1942).  Hart recognized the 

labor time, inaccuracies, and cost associated with producing traditional shoe soles and 

developed a layer-based method.  Hart developed locating plates for the layers to rest upon 

and a locating bar to ensure proper positioning.  Disassembling and rotating the layers with 

proper location allowed Hart to produce a mirrored image of an asymmetric mold with 

accurate replications of shoe soles.  Hart’s shoe sole design had two main concepts that layer-

based die tooling researchers have continued to follow:  (1) layer reconfiguration, and (2) 

locating and positioning plates. 

Clevenger et al. applied this concept of laminated plates to patent a method focusing only on 

hydraulic pressing sheets for female dies (Clevenger, Cohen, & Cohen, 1954).  The hydraulic 

press creates a tight seal between the layers.  Laminations are stacked with pins on opposite 

corners and hydraulically pressed into the previous layer for securing (Figure 5).  Clevenger 

et al. suggests that the hydroforming process lends itself well to interchanging layers for 

multiple types of materials (steel, brass, aluminum, cardboard, paper, or plastics).  Although 

Clevenger’s concept suited well to multiple materials and disassembly, he did not consider 

mechanical requirements in his design. 
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Figure 5.  Locating pins for press fitting (Clevenger, Cohen, & Cohen, 1954) 

DiMatteo addressed problems associated with three-dimensional shapes with unique cross-

sectional geometry as well as accessibility issues associated with the depth of three-

dimensional external and internal shapes (DiMatteo, 1976).  DiMatteo developed a method 

for constructing three-dimensional bodies with decreased time requirements and cost.  Layers 

were automatically cut using laser beam, mill, or saw X and Y coordinates on the surface.  

Once a layer was complete, a roller applied an adhesive to the cut layer.  A new layer was 

then attached.  In cases where metals are used, the layers were attached by a bolt that passes 

through all layers and secured with a nut on the opposite side.  In the case of die tooling, 

layers were stacked and all the layers were bolted together noted by the four holes shown in 

Figure 6. 

 

Figure 6.  Female die for punch press (DiMatteo, 1976) 
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Walczyk and Hardt applied the concept of layer-based die fabrication and added a beveled 

curve to approximate the first-order interpolation of the surface to remove the stair-stepped 

look of traditional rapid prototyping dies (Walczyk & Hardt, 1998).   

 

Figure 7.  Profiled edge lamination (Walczyk & Hardt, 1998) 

Vertical layer orientation encounters layer delamination from loading in the form of elastic 

deforming or buckling under loads (Walczyk & Hardt, 1998).  Forces applied at the surface 

of the die, shown in Figure 8, include frictional force (µFn) and the normal force (Fn).  The 

buckling and bending forces from interlaminate layers can further be determined from the 

normal force and coefficient of friction (µ) (Walczyk & Hardt, 1998). 

 

Figure 8. Vertical layer orientation delamination (Walczyk & Hardt, 1998) 
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Walczyk developed an analytical model to address the structural integrity of unbonded and 

adhesively bonded ANSI 6061-T6 aluminum layers in the vertical layer orientation (Walczyk 

& Im, 2005).  The cantilever beam model evaluated deflection by varying the number of 

layers, layer thickness, and joining method when a force is applied across sheets of metal.  

Analytic and finite element models were validated with experimental data.  The experimental 

validation mounted sheets of AISI 6061-T6 aluminum into a vise.  The deflection error 

between the model and the experimental trials ranged between -25% and +12% error 

(Walczyk & Im, 2005).  Walczyk and Im noted the high negative error was due to the overly 

stiff unbounded trials.       

No method currently exists to build horizontal layers with increased layer strength.  Although 

much force is applied in the z-axis, the surface geometry may lend to shearing forces which 

are cause for concern with layer slip or delamination.  Without a proper analysis of the 

interlaminate strength with mechanical joining methods (pins and bolts), layer-based die 

tooling may not have the structural integrity of a permanent die. 

Often, dies require several iterations before the correct die is developed.  The ability to 

interchange layers for redesign is desirable and has been a motivating factor in previous 

research.  Interlaminate strength by bolt would allow the interchange of layers.  The use of 

bolts as a joining method for rapid fabrication for dies is not a new concept.  However, 

previous research has not focused on the interlaminate strength of a bolt securing method.  

Proper strength should eliminate slippage and delamination from forces in sheet metal 

operations.  One of the primary areas of this research is on interlaminate shear stresses in die 

tooling. 

Advantages and Problems with Laminate Dies 

Walczyk and Hardt have published the most extensive papers in the area of laminated tooling 

(Walczyk & Hardt, 1998), (Walczyk & Hardt, 1999), (Im & Walcyzk, 2002), (Shook & 

Walczyk, 2004), (Walczyk & Im, 2005), (Yoo & Walczyk, 2005), (Walczyk & Yoo, 2009).  

Walczyk and Hardt (Walczyk & Hardt, 1998) describe four main advantages of the vertical 

layer orientation versus the horizontal layer orientation.  The first advantage is that the 
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profiled-edge lamination can be automated easily to slide on the locating plates since only the 

top surface is cut, leaving datum surfaces on the bottom and sides of each layer.  The 

horizontal layers are more difficult to automate the layer material handling.  The second 

advantage that is the sheets are located on the surfaces of the lamination mounting and 

clamping frame to ensure location and position, as shown in Figure 7.  The horizontal 

method is difficult to locate (particularly in the case of islands).  The third advantage is ease 

of securing by clamping force.  The horizontal method is difficult to secure each layer.  

Lastly, the vertical layers lend to easy reconstruction.  Removal of layers requires simple 

unclamping of the vise.   
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Chapter 3.  Research Problem 

Notation 

Geometric properties: 

o �� Point on slice parameter 

o ���  Bolt zone diameter 

o ���  Pin zone diameter 

o 	� Span length 

Mechanical properties: 

o 
� Layer mass force 

o �� Moment for layer and side i 

Hardware: 

o ��  Bolt head diameter 

o �� Pin diameter 

o �� Number of bolts 

o �� Number of pins 

Interface Shear: 

o 
� Frictional force 

o µ Coefficient of friction 

Interface Moment: 

o �� Moment about layer L 

o �� Layer height 

o �� Layer width 
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Pin: 

o 
�  Pin force 

o ��  Pin material shear yield strength 

o �� Number of pins 

o �� Radius of pins 

Bolt: 

o 
�  Bolt preload tensile force 

o ��� Moment arm distance to bolti 

o �� Ultimate tensile stress (bolt)  

o 
������   Preload force  

o  ! Tensile stress area 

Layer Weight: 

o " Layer mass 

o 
� Layer mass force 

o #�  Density 

o $ Volume of layer 

Laminated Die Architecture 

The objective of this research is to develop a process planning method for laminated die 

manufacture to automatically provide adequate interlaminate strength using a minimum 

number of fasteners.  From Walczyk’s work (Walczyk & Hardt, 1999), laminated die tooling 

requires four essential elements: (1) automation, (2) layer registration, (3) securing for tool 

rigidity, and (4) disassembly.  Laminated die tooling with horizontal layers can be rapidly 

manufactured for sheet metal bending based on predetermined inputs of die geometry, 

predetermined layer thickness, die material properties, predetermined fastener size, and sheet 

metal properties.  Outputs from this system include the number and location of the fasteners 

within each interlaminate surface. 
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The hardware presented in this study includes dowel pins and bolts.  Two dowel pins meet 

Walczyk’s second element of layer location.  If only one dowel pin were used, interlaminate 

rotation will occur, Figure 9a.  Bolts meet the fourth element of die disassembly.  Additional 

dowel pins and bolts can achieve tool rigidity under predetermined force conditions.  Bolts 

serve as a joining tool that allows for easy disassembly of the die tooling.  Mechanically, 

bolts also serve as a resistance to layer rotation along the frontal plane, Figure 9d. 

          

                                      (a)                                                                    (b) 

            

                                     (c)                                                                       (d) 

Figure 9. (a) Top view of die with translation rotation from only one pin, (b) isometric view of 
translation rotation, (c) front view of die with frontal rotation without joining, and (d) front view 
of frontal rotation with bolt 

However, without proper design for mechanical requirements, the die tool may not be rigid.  

Shear (
!) and compressive (
%) forces are shown as black arrows acting on one layer of the 

Fs 

Fs 

Fc 
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laminated die tooling during sheet metal bending, Figure 10a.  The beam balancing arrows to 

create a static layer from the shear and compressive forces are displayed in red.  

Mechanically, dowel pins serve as resistance to layer sliding shown in Figure 10b.  However, 

dowel pins are not enough to resist the moment acting on the layer as a result of the shear and 

compressive forces magnitude.  A moment about the layer may still occur without proper 

number and positioning of bolts, Figure 10c.  Based on bolt properties, the bolt will act as a 

counteracting force on the layer’s moment, Figure 10d.   

     

 (a)                                                                    (b) 

      

 (c)                                                             (d) 

Figure 10. (a) Forces from sheet metal to the die (black) and counteracting forces from die to 
sheet metal (red), (b) dowel pins resist shear force, (c) dowel pins do not resist moment, and 
(d) bolt to resist the moment 

Formal Problem Statement 

The objective of the proposed system is to minimize the quantity of bolts and dowel pins per 

layer subject to the following design constraints: 

Fs 

Fc 
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• Spacing hardware 

• Locate layers 

• Bond layers 

• Resist interlaminate shear 

• Resist interlaminate moment 

To develop a formal problem statement, each constraint must be examined and quantified.  

The following sections address each constraint individually. 

Hardware Spacing 

Safe distance from the layer edge allows for proper thread engagement for bolts and material 

thickness for dowel pins.  Safe distance between hardware is ensuring that bolts and dowel 

pins are not too close to one another.  Applying hardware to two layers allows for the system 

to have a standard bolt and dowel pin size.  When placing the hardware to layers, the above 

layer cannot overlap the hardware.  If so, hardware interference is created.  

Bolts and dowel pins cannot be too close to one another.  The following work refers to the 

bolt as the “bolt zone” and the dowel pin as the ‘pin zone.’  The bolt has a diameter, ��, 

which is largest at the bolt head.  The additional zone (���) is the physical diameter around 

the bolt head end is the minimum distance any feature can be from the bolt.  The dowel pin 

operates in the same fashion.  The dowel pin has a nominal diameter, ��, with an additional 

zone (���) surrounding the dowel pin diameter.  The zones (��� and ���) will be 

predetermined by the operator. 
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                                                (a)                                                (b) 

Figure 11. (a) Bolt head (solid line) with additional bolt zone (dotted line) and (b) dowel pin 
(solid line) with additional dowel pin zone (dotted line) 

Locating Layer 

Dowel pins will both locate layers with respect to one another and prevent interlaminate 

sliding from shear force in this technology.  Based on these expressions, the number of 

interlaminate pins can be derived.  The minimum number of pins can be determined for the 

die tooling in equation 1. 

�� ≥ 	'()*+ 
'-*.� ∙ 0123∙0456∙� = 	'()*+ 
'-*.� ∙ 0123∙0456∙89:;<= (1) 

Where: 


! = 	ℎ)'� 
.�-)  


% = ?."@�)AABC) 
.�-)  

D = ?.)((B-B)E* .( A*'*B- (�B-B*.E F)*G))E H'+)�A  

�� = �BE "'*)�B'H +B)H� A*�)EI*ℎ 

�� = �J"F)� .( @BEA 

 = ?�.AA A)-*B.E'H '�)' .( @BE  

�� = K'�BJA .( �.G)H @BE  

�� �� 

��� ���  
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From equation 1, the theoretical minimum number of dowel pins required to resist shear 

force can be obtained.  However, additional dowel pins may be required to accommodate for 

the die tooling layer geometry and to resist translation rotation.   

Layer Bonding 

The interlaminate joint strength is critical.  The bolt is the primary securing mechanism in the 

proposed system.  Without a bolt, the die tooling layer is not properly secured.  In this case, 

the bolt tensile force is the mass of the current and the previous layers (
�), shown in 

equation 2. 


� = #� ∙ ∑ $MNMO�   (2) 

Where: 

#� = �'*)�B'H �)EAB*+ 

$� = $.HJ") .( H'+)� B  
The force on the bolt (
�) must be less than the tensile force experienced on the bolt.  If 
� is 

greater than the tensile force, the bolt will break (Bickford, 2008). 


� < QRS20TUVWXYZ[Q�1[\]�^_� 0]%_`:   (3) 

Where: 

�� = aH*B"'*) b)EABH) 	*�)AA .( F.H*  


������ = ��)H.'� (.�-) �)cJB�)� Gℎ)E F.H*BEI Q)cJ'*B.E 4[ 



www.manaraa.com

21 

 

 

 

 ! = b)EABH) A*�)AA '�)' Q)cJ'*B.E 5) 

	'()*+ = 	'()*+ ('-*.�  
Equation 4 requires knowledge of the preload force when joining the layers.  Required 

preload force can be obtained from equation 4 (Bickford, 2008): 


������ = f� ∙ � ∙ gUhij  (4) 

Where: 

f� = k.H* A*B((E)AA 

� = �B*-ℎ .( *ℎ�)'�A 

l� =  EIH) .( EJ* �.*'*B.E Q�)I�))[ GB*ℎ �)A@)-* *. *ℎ) F.H* 

The bolt force also requires knowledge of the tensile stress area.  The tensile stress area of a 

standard 60° thread bolt is determined from equation 5 (Bickford, 2008): 

 ! = 9m n� − pj.rsmtN uvw
   (5) 

Where: 

� = E."BE'H �B'")*)�  

E = EJ"F)� .( *ℎ�)'�A @)� BE-ℎ  

The bolt stiffness is given in equation 6 below (Bickford, 2008).  

f� = ��1x   (6) 
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Interlaminate Shear Forces 

The layers experience interlaminate shear force from sheet metal bending.  The shear force 

results in the layers sliding past one another.  Interlaminate frictional force influences is one 

component that influences shear force.  The layer free body diagram in Figure 12 displays the 

frictional force vector occurring on the interlaminate surface.  The frictional force vector is 

directed opposite of the shear force from bending the sheet metal.  In turn, the frictional force 

decreases interlaminate stress and is vital to include in force modeling. 

 

 

Figure 12. Free body diagram of interlaminate forces 

The coefficient of friction between die layers (µ) creates a force opposite 
!, proportional to 
%, that helps resist the tendency of 
! to shift layers relative to each other.  The frictional 

force is the resistance from side movement due to the material relationship from the 

coefficient of static friction (D).   


� < D ∙ 
%   (7) 

Pins are designated to resist the interlaminate shear force.  As the coefficient of friction 

between each layer, D, approaches zero, the force on the pins increases. 

�BE 	ℎ)'� 
.�-) = 
� = 
! − 
� = 
! − D ∙ 
% (8) 

The number of pins can be simplified from equation 1. 


!  


y 
 


�  
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�� ≥ 	'()*+ 
'-*.� ∙ 0T56∙89:;<=  (9) 

Figure 13a demonstrates a case where the shear force exceeds the frictional force.  Pins are 

used to overcome plate sliding from shear force in Figure 13b. 

                                   

                                        (a)                                                                    (b)                                                          

Figure 13. (a) Shear force applied to bottom layer causes sliding and (b) pins (n) resist shear 
force  

Effect of Sheet Metal and Die Tooling Friction  

Friction exists between the sheet metal and the die tooling. Figure 14 displays the free body 

diagram of the forces acting on the die tooling from the sheet metal.  As shown, the frictional 

force (
� = D
%) acts opposite shear force (
!) and with compressive force (
%).  From 
� > 
! − D
%, reducing 
! and increasing 
% has the effect of reducing the pin shear force 

(
�).   

In the presented work, frictional force between the sheet metal and the die tooling is 

considered to be negligible for model simplification.  Neglecting frictional force also 

provides a worst-case scenario; this will result in a conservative estimate of total pin force.  

In reality, the shear force experienced by the pins may be smaller. 


!  
!  


�  
�  
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Figure 14. Free body diagram between sheet metal and die tooling 

Layer Moment 

Layer moment is the last mechanical requirement analyzed in the presented system.  Layer 

moment is crucial for process planning to prevent delamination of layers.   

Layer Moment Calculation 

In the presented work, bolts are utilized to resist the moment acting on each layer during 

sheet metal bending.  While dowel pins and bolts both resist forces in multiple directions 

(with varying degrees of success), their effects are separated to simplify the analysis and 

provide a worst-case bound.      

Fs 

Fc 
F 

Ff 
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Figure 15. Layer moment with bolt resistance  

Figure 15 displays the moment acting on layer B from shear and compressive forces.  The 

layer moment occurs when 
!��� > 
%��.  Bolts resist the moment by tensile force (FB) and 

the bolt distance from the moment.   

The resultant layer moment, i, acting on a given layer, j, for all bolts, k, is given in equation 

10.   

�� = 
!{ ∙ �� − 
%{ ∙ �� ≤ 
�} ∙ ∑ ��}    (10) 

Where: 


! = 	ℎ)'� (.�-)  


% = ?."@�)AABC) (.�-)  


� = k.H* *)EABH) (.�-)  

�� = �'+)� ℎ)BIℎ* 

dB 

Lw 

Lh 

Fs 

Fc 
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�� = �'+)� GB�*ℎ  

��} = �.")E* '�" �BA*'E-) *. F.H*� 

Bolt Force 

Based on the expression ∑ �� ∙ 
� ≥ 
! ∙ ��� − 
% ∙ ��, the number of bolts can be 

determined.  Unlike the number of pins, satisfying the moment condition is dependent on the 

physical location of the bolt within the slice geometry.   

Revisiting the Formal Problem Definition 

Having defined each constraint, the mathematical problem definition is provided below. 

Objective Function:  Minimize the �� and �� in �� 
Constraints:  

(1) Safe distance from slice edge:  

o From slice edge to bolt: �� − �� ≥ ��� 

o From slice edge to pin: �� − �� ≥ ��� 

(2) Safe distance between hardware: 

o Between bolts: ��� − ��{ ≥ ��� 

o Between pins: ��� − ��{ ≥ ��� 

o Between bolts and pins: ~��� − ���~ ≥ � �Q��� , ���[ 

(3) Resist interlaminate shear: �� ≥ ���p�0TZ��,�0TZ{�,…,~0TZ�~u56∙8��;<=  

(4) Locate layer: �� ≥ 2 

(5) Resist interlaminate moment:  ∑ �� ∙ 
� ≥ 
! ∙ ��� − 
% ∙ �� 

(6) Satisfy layer weight criteria: ∑ �� ∙ 
� ≥ 
� 

(7) Space bolt location along largest span: � �Q	�, … , 	�[ 
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Research Direction 

The number of dowel pins and bolts are easily derived.  The only unknown solving for the 

number of dowel pins and bolts is determining the shear (
!) and compressive (
%) force 

components.  Previous researchers have not considered the shear and compressive forces at 

any height during sheet metal bending.  Knowing proper force components during sheet 

metal bending, die tooling fastener placement is determined to withstand layer sliding and 

layer moment.  Chapter 4 derives the shear and compressive forces for two arbitrary 

geometries.  After determining these forces, a heuristic method for solving the best location 

for the dowel pins and bolts is determined.  Two algorithms are proposed in Chapter 5 for the 

placement of bolts and dowel pins. 
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Chapter 4.  Modeling Die Tooling Requirements in Sheet Metal 

Bending 

The objective of this research is to develop a process planning method for laminated die 

manufacture to automatically provide adequate interlaminate strength using a minimum 

number of fasteners.  Chapter 3 discusses the primary problem in determining the minimum 

number of fasteners which is determining the correct force modeling of the die tooling 

surface.  Chapter 3 presents the basic form of the shear force and layer moment equations.  

This chapter derives the basic equations for different geometries.  Chapter 5 uses the shear 

force and layer moment expressions determined in this chapter as inputs for a process 

planning algorithm for die manufacture.  This chapter presents an original contribution of a 

mechanical analysis for die tooling considering only the effect of mechanical loads on the 

tooling during sheet metal bending. 

Force models exist for modeling sheet metal bending.  Boothroyd (Boothroyd, Knight, & 

Dewhurst, 2002) modeled the required force to bend sheet metal as the average compressive 

force from strain energy.  Boothroyd’s model does not account for shear force, which is 

important for the proposed model.  Walcyzk and Im (2005) modeled layer deflection as a 

result of a known force input.  The presented model here determines both the mechanical 

shear and the moment from an unknown force input based on die tooling geometry.   

A review of past work does not reveal a mechanical model that determines the required 

forces to bend sheet metal based on die tooling geometry.  Horizontal layers are prone to 

failure mode if the maximum mechanical requirements are not adequately modeled.  

Compression from bending sheet metal will be absorbed by the horizontal layers just as in a 

traditional die.  However, the horizontal component of sheet metal bending will act on the die 

tooling in a direction that would cause the layers to shear apart.  In other cases, these forces 

can cause layers to rotate with respect to each other.  Determining the maximum shear and 

moment loads experienced by the die tooling for different die tooling geometries is important 

to prevent tool failure.   
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Overview of Modeling Methodology 

Designing for mechanical requirements extend the functionality of rapid die tooling.  The 

shear force results in sliding of layers while the moment results in rotations of layers.  Both 

the shear force and moment must be controlled to prevent delamination of the die layers 

during use.  The two primary mechanical requirements of concern in the presented work for 

horizontal laminated die tooling are the shear force and moment as previous shown in Figure 

10.   

Input geometry determines the required force to bend sheet metal in the presented work.  

Two geometries are presented in this work: linear and parabolic.  A linear surface is a simple 

case where the surface of the die tooling may have varying slopes.  Parabolic surfaces are 

modeled to represent sheet metal bending about a curved surface.  Parabolic surfaces are the 

most tractable of conical shapes.  Parabolic surfaces fit to a variety of curved surfaces to 

predict force components.  Although linear and parabolic surfaces are the only geometries 

discussed in the presented work, the present model can be adapted to model other surfaces.   

The remainder of this chapter covers the necessary steps for modeling shear force and layer 

moment.  The next is an overview of the variables presented in this chapter followed by a 

discussion of the general force model to bend sheet metal.  Next, the force model verification 

is discussed.  Lastly, the mechanical requirements are concluded. 

Notation 

Sheet metal properties: 

o � Width of sheet metal 

o ��  Yield strength (sheet metal) 

o *  Sheet metal thickness 

o � Young’s modulus (sheet metal) 

Bending Moment: 

o � Moment of sheet metal about the die tooling  
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o � Moment of inertia 

o #y  Radius of curvature 

Contact Forces: 

o 
 Resultant force 

o 
! General shear force component 

o 
% General compressive force component 

o 
� Frictional Force 

o 
!Q[ Linear shear force component 

o 
!Q�[ Parabolic shear force component 

Die Geometry: 

o ? Height of the geometry 

o   Width of die geometry 

o �0 Distance Factor 

Sheet Metal Bending Moment 

The sheet metal can be modeled as a simple beam bending problem where the moment to 

bend the sheet metal is the bending force times the moment arm distance.  The sheet metal 

moment arm can be determined by pre-existing calculations.  However, for curvature, the 

moment arm may contain parts of plastic and elastic deformation.     

The required force to bend the sheet metal can be determined from beam bending equations.  

Figure 16 displays the moment to plastically bend sheet metal about the neutral axis. 
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Figure 16. Moment to plastically bend sheet metal (Hosford & Caddell, 2007) 

Assuming purely plastic deformation of the sheet metal around a sharp corner or tight radius 

for linear geometry, the moment can be calculated as shown in equation 11 (Hosford & 

Caddell, 2007).  

� = �QA*�)AA[Q'�)'[Q".")E* '�"[ = � ��� � ��_/w2_/w   (11) 

Where: 

�� = �B)H� A*�)AA .( Aℎ))* ")*'H 
� = �B�*ℎ .( Aℎ))* ")*'H 
� = �E*)�C'H + _w  *. − _w  

Simplification of the sheet metal moment arm equation 11, can be resolved in equation 12, 

(Hosford & Caddell, 2007). 

� = 2 � 8��=Q� ��[Q�[_/wj = R6�_<m    (12) 
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The moment from equation 12 occurs for linear geometry where the point of rotation is near 

zero.  Sheet metal bending about a curved surface follows a different moment arm equation if 

elastically deformed.  For an elastic bending situation, the moment is evaluated in equation 

13 (Shigley, 1956). 

� = ���   (13) 

Where: 

� = �.JEI�A �.�JHJA 

� = �.")E* .( BE)�*B' 

# = K'�BJA .( -J�C'*J�)  

Since the sheet metal is assumed to be a rectangle, the moment of inertia for a rectangular 

section can be substituted into equation 14 and further be expanded. 

� = � ∙ �_��w ∙ ��   (14) 

The radius of curvature can be expanded to include the surface geometry to give the final 

moment shown in equation 15 (Stewart, 2009). 

� = � ∙ �_��w ∙ �<6��<
���p�6��u<��/<   (15) 
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General Force Model 

As previously discussed, the sheet metal bending moment is one of two input parameters to 

determine sheet metal bending force.  The second input parameter is the moment arm 

distance.  The moment arm distance is dependent on the die tooling geometry.   

The resultant force is the total force required to bend the sheet metal.  Shear force is one 

component of the resultant force.  Knowing the resultant force, the shear force can be 

derived.  The die corner will have some finite radius and the force will be normal to the sheet 

metal.  Thus, the resultant force is always normal to the sheet metal as shown in Figure 17. 

   

  

Figure 17. Reacting Force Normal to Sheet Metal 

Die tooling variable definitions include (illustrated in Figure 17):  

• � – Distance from between die halves points of contact 

• ? – Height of the geometry 

• ℎ – Distance moved by the top die 

• � – Vertical distance between die halves 

F 

x 

y 
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The second input parameter to determine the resultant force is the distance.  The resultant 

force to bend sheet metal for the above geometry is given in equation 16 below. 


 = �√�<��<   (16) 

Reaction Force 

The resultant force can be decomposed into compressive (
%) and shear (
!) force 

components.  Compressive and shear forces are modeled from the point of contact with the 

sheet metal as shown in Figure 18.   

 

Figure 18.  Resultant force and � and � force components acting on the sheet metal through 
the point of contact 

Algebraically, the resultant force can be resolved into shear and compressive force 

components:   


! = 
ABEl = �√�<��< ∗ �√�<��<                                                     (17) 


% = 
-.Al = �√�<��< ∗ �√�<��<  (18) 

The force acting on the pin is determined in equation 19.  


� = 
 ∙ ABEl − 
 ∙ D ∙ -.Al = 
 p �2�3√�<��<u = � �2�3�<��<  (19) 

F 

Fs 

Fc 



www.manaraa.com

35 

 

 

 

Piece-wise Linear Die Model 

The previous discussion developed general models for determining 
! and 
% (equations 17 

and 18) as a function of die shut height � and parameters � and ℎ shown in Figure 19.  This 

section develops particular solutions for � and ℎ based on linear edge die geometry.   

 

Figure 19. Variables h and D change with time during bending 

A geometric relationship between shear force (
!) and stamping height � for a linear surface 

can be determined by the geometric die height ?.  As the die stamps sheet metal, the resultant 

force remains constant, but the shear and compressive forces alter as the die height is 

reduced.  For piecewise linear geometry, the die surface can be described in equation 20, 

where C represents the maximum height of the die and AL is the slope of the linear surface. 

+ = −   + ? → 0 <   < p y�Wu  (20) 

From equation 20, variables � and ℎ are defined for linear geometry as given in equations 21 

and 22 below.  The variable � is the point of contact distance on the sheet metal from the top 

to the bottom die.  The variable ℎ is the distance the top die has moved downward during 

clamping.   

� = y�W (21) 
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ℎ = ? − � (22) 

Substituting linear equations for � and ℎ into the original shear and compressive force 

expression on the dowel pin (equations 17 and 18), equations 23 and 24 are determined. 


\Q[ = � ∙ ��<��< = � ∙ Qy2�[� xYW�<�Qy2�[< (23) 


%Q[ = � ∙ ��<��< = � ∙ � xYW�
� xYW�<�Qy2�[<  (24) 

The shear force acting on the dowel pins for a linear surface includes frictional force as 

shown in equation 25. 


�Q[ = � ∙ �2�3�<��< = � ∙ Qy2�[2� xYW�3
� xYW�<�Qy2�[<  (25) 

Parabolic Die Model 

Modeling parabolic surfaces follows the same steps as the linear model.  First, the resultant 

force is determined from the surface geometry.  The parabolic shear force is a component of 

the shear force. 

Parabolic Resultant Force 

Modeling curvature in sheet metal bending is more complex than linear surface.  Similar to 

linear surface, curvature can be modeled using equation 16 for the resultant force, 
 =�√�<��<.  This analysis becomes more difficult because the point of contact on both die halves 

is continuously changing as shown in Figure 20; both ℎ and � will now be functions of �.  
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Whereas previously ℎ was determined by a single contact point on the bottom die, it now 

must be found so that the contact point satisfies a tangent boundary condition as the sheet is 

formed over the die. 

 

Figure 20. Continuously changing tangent slope and point of contacts for a parabola 

The basic equation for the surface of the downward parabola is + = −  w + ? where A is 

the focus (parabola width) and ? is the parabola height.  The minimum moment required to 

bend the sheet metal for a parabola is assumed to trade between plastic and elastic 

deformation, provided in equations 12 and 15.  If the radius of curvature is large, the sheet 

metal may not completely plastically deform.  In this case, sheet metal springback occurs.  

The moment arm is continually changing for parabolic die geometry.  The force required to 

plastically deform the sheet metal is different based on the equation for a parabola.  The ratio 

of ℎ and � can be equated to the slope of the lower die at the contact point, thus allowing the 

contact point to be determined algebraically: 

AH.@) = ���£ = 2�� = �¤2�<£¤2£< = −2  w  (26) 

From equation 26,  � and +� are determined at the maximum   and + values along the 

tangent.  The equations for  � and +� are given in equations 27 and 28 respectively. 

(x2, y2) 

(x1, y1) 

(x2, y2) 

(x1, y1) 

y 

x 
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+�Q �[ = 0 ⇒  � = ¦y�  (27) 

+� = � (28) 

Substituting the values for  � and +�, while replacing +w with the standard equation for a 

parabola, –   ww + ?, into the slope equation, equation 29 can be derived. 

AH.@) = �282�£<<�y=¦xY2£< = −2  w  (29) 

Solving for  w in equation 28 gives the final expressions for ℎ and � which are given in 

equation 30 and 31. 

ℎ = 2√?� − 2�  (30) 

� = ¦�� (31) 

Now, the parabolic surface is in terms of the linear surface (h and d).  The values from h and 

d can be substituted into the expression for general resultant force (equation 16) to obtain the 

resultant force for a parabolic surface: 

 
 = �√�<��< = �
¨©¦ZYª<�8w√y�2w�=< (32)   
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Valid Bound on Force 

The sheet metal moment about a parabolic surface is unlike that of a linear surface.  As the 

moment approaches zero, lim�→j aE�)(BE)�, the moment is undefined.  The sheet metal 

experiences both plastic and elastic moments about the parabolic surface.  The moment arm 

(�) for the parabola approaches zero.  The model must account for sheet metal thickness as 

the die tooling is clamping for a curved surface.   

The top die will stop at some � value above zero.  Offsets to accommodate for the sheet 

metal thickness should be considered for a further, more accurate model.  To determine the 

height at which the top die theoretically stops, an offset normal to the parabolic surface equal 

to * is projected outward, shown in Figure 21. 

 

Figure 21. Sheet Metal Thickness Offset 

The slope of the line created from the end points of the two parabolas can be derived from 

the first derivative of the equation of the parabola. 

  " = −2     (33) 

The previous equation expands by substituting the   value: 
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" = −2 ¦y�  (34) 

The final slope for the line is given in equation 35. 

" = −2√?   (35) 

Once the slope and offset of the parabola have been determined, the angle between the base 

of the die tooling and the slope can be derived, noted as l.  Figure 22 is a visual 

representation of the sheet metal and the ℎ and � values. 

l = tan2� "  (36) 

 

Figure 22. Determine minimum d and D values for a parabola 

The shutting height, �, that accounts for the sheet metal thickness is given in equation 37. 

� ≥ _%`!g  (37) 

θ 
θ t 

D 

d 
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Determine Parabolic Shear Force 

The original shear and compressive forces determined in equations 17 and 18 are evaluated 

for the parabolic surface resultant force, equations 38 and 39.   


!Q�[ = 
ABEl = �
¨©¦ZYª<�8w√y�2w�=< ∙ 8w√y�2w�=

¨©¦ZYª<�8w√y�2w�=<  (38) 


%Q�[ = 
-.Al = �
¨©¦ZYª<�8w√y�2w�=< ∙ ¦ZY

¨©¦ZYª<�8w√y�2w�=<  (39) 

Following the same free body diagram in Figure 12, the total pin force for a parabola 

including frictional force expressed in equation 40. 


�Q�[ = 
 ∙ ABEl − 
 ∙ D ∙ -.Al = � ± 8w√y�2w�=2©¦ZYª3
8w√y�2w�=<�©¦ZYª<²   (40) 

Determine Shear Component Maximum 

Ideally, an expression can be derived to determine the maximum shear force on the die 

tooling given the input geometry.  The shear force is continually changing with the changing 

resultant force.  If a mathematical expression for maximum shear force exists for either the 

linear or parabolic models, the modeling is greatly simplified. 

Shigley (Shigley, 1956) presented a way of determining the maximum deflection for a beam 

bending model.  Shigley performed the first derivative test of the distance criteria function.  

The maximum deflection occurs at the peak of the function when the slope is zero.  This is 

known as the first derivative test for engineering mechanics. 
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Similar to Shigley’s first derivative test for maximum deflection, maximum pin force acting 

on the die tooling layers can be determined by use of the first derivative test.  The height � at 

which the pin force is highest can be determined through the first derivative test.   

Linear Geometry Maximum Pin Force 

The following expressions test for the local maximum pin force for a linear surface as the 

shut height, �, changes.  � is defined as the clamping distance between die halves.  The first 

derivative test equates the pin force of the linear surface as a function of the shutting height 

and sets the first derivative equal to zero as shown in equation 41. 

�0TQW[�� = 0  (41) 

The first derivative of the total pin force, given in equation 41, is evaluated in equation 42. 

³´µQ¶[³· = � ³³· Qy2�[2� xYW�3
� xYW�<�Qy2�[<  (42) 

Equation 42 can be solved and reduced to a simple equation for maximum pin force applied 

to the die tooling for linear geometry: 


�Q[,�]£ = � p�Wwyu � �¸3<���3�  (43) 

The shutting height � of the maximum pin force is shown in equation 44. 

� = ? − py�u pD + ¸Dw + 1u  (44) 

The detailed calculations for deriving the linear surface first derivative are in Appendix I. 

First Derivative Test: Linear Surface. 
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Parabolic Geometry Maximum Shear Force 

No common factors cancel when expanding the parabolic shear force expression to create a Q? − �[ relationship.  The derivative can be calculated in a straightforward manner, but it is 

impractical to solve for � such that the derivative equals zero, much less substitute the 

resulting value for � back into the original equation.  The maximum pin force for a parabola 

is highly dependent on the input parameters (  and ?).  Thus a graphical approach is taken to 

finding the maximum pin force by varying input parameters   and ?. 

Since the parabolic surface could not obtain a maximum pin force, the pin force is graphed to 

determine the maximum pin force.     

�'�'F.HB- ��I) �BA*'E-) 
'-*.�: 8w√y�2w�=2©¦ZYª3
8w√y�2w�=<�©¦ZYª<   (45) 

Graph Parabolic Surface 

The force behavior of the parabolic edge differs from the linear edge.  When graphing, the 

minimum of the plastic and elastic shear force values were used as � approached zero.  This 

accounts for springback that may occur during the bending process.  The following series of 

figures (Figure 23 and Figure 24) display the change of the shear force as two die halves 

clamp onto the sheet metal.  The following example maintains a constant * and  , 0.0625 

inches and 0.0625 inches
-1

 respectively.  The graph shown in Figure 23 begins with a 

negative pin shear force (
�), meaning that the die is initially stable without pins.  As the die 

reaches D = 7.5 inches, the pin shear force begins to increase. 
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Figure 23. Bending Sheet Metal about Parabola (D = 7.5 in.) 

As the die tooling is fully clamped, the pin shear force experienced by the die spikes 

significantly, shown in Figure 24 and becomes non-existent at � = 0 BE-ℎ)A.  Based on the 

graph, no quantity of pins will be able to resist the pin force from the spike.  The spike 

reaches an infinite shear force.   

 

Figure 24. Bending Sheet Metal about Parabola (D = 0 in.) 

Now, adjusting for the invalid moment, the � for this particular case derived from equation 

36, is � = 0.14 BEches. 
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Figure 25. Bending Sheet Metal about Parabola (D = 0.14 in.) 

The presented approach estimates shear force for a parabolic surface.  More complex 

modeling to include sheet metal thickness offsets could be developed for a more accurate 

representation.  

Force Model Verification 

The previously discussed model presents a method for predicting shear forces and layer 

moments based on die tooling geometry.  The number of bolts and pins has been determined 

throughout this chapter.  The distribution and location of bolts and pins to satisfy the 

mechanical requirements will further be discussed in Chapter 5. 

Similar to the proposed model, different models have been developed to analyze required 

forces for sheet metal bending.  Previous work in sheet metal bending did not combine shear 

force, compressive force, and resultant force based on the die geometry at any point in time.  

However, previous authors can guide the presented work for general solutions. 

Boothroyd modeled sheet metal bending as the required work done by unit volume.  This 

model determines the average compressive forces.  The average compressive force can 

determine the desired press for a given sheet metal bending operation.  The pitfall of this 

model is it does not provide force components over bending time for process planning. 
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Figure 26. Fitting parabola curve (red) to arc (black) (Boothroyd, Knight, & Dewhurst, 2002) 

According to Boothroyd, the average compressive force determined by work done by unit 

volume is given in equation 46 (Boothroyd, Knight, & Dewhurst, 2002). 


% = 0.08 ∙ a ∙ ℎ ∙ �¼  (46) 

Where: 

a = aH*B"'*) b)EABH) 	*�)EI*ℎ  

ℎ = 	ℎ))* �)*'H bℎB-½E)AA  

�¼ = �B�*ℎ .( *ℎ) 	ℎ))* �)*'H  
For a stainless steel die with U = 95,000 lb/in

2
 (Groover, 2002), h = 0.0625 inches, and Lb = 

8 inches.  The average compressive force is calculated in equation 47. 


% = 0.08 ∙ 95,000 ¿¼�N< ∙ 0.0625 BE ∙ 8 BE = 3,800 HF  (47) 

Fc 

�2ℎ + 12 ℎ, 2.5ℎ� 

y 

x 
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Figure 27. Surface geometry dimensions 

Using the dimensions in Figure 27 for the compressive force calculation in the presented 

work, the compressive force can be determined at any point in time.    is determined in 

equation 48. 

¦y� = ? →  = �y  (48) 

All variables are known for the parabolic compression force, given in equation 49.   


%Q�[ = 
-.Al = � ∙ ¦ZY
©¦ZYª<�8w√y�2w�=<  (49) 

The dark blue line is the change in compressive force over the change in D.  The light blue 

line is the average compressive force.  The red line is the average compressive force from the 

strain energy equation (Boothroyd, Knight, & Dewhurst, 2002).  For the given variables, the 

average compressive force by the parabola is 5,024 lb.   

Q0.15625 BE, 0.15625 BE[ 

x 

y 
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Figure 28. Compressive force from parabolic and strain energy equations 

Mechanical Requirements Conclusion 

The primary objective of this research is to develop a process planning method for die 

manufacture, with improved interlaminate stress compared to existing methods.  Chapter 4 

accomplished the first half of this objective by determining the interlaminate shear and 

moment vectors for laminated tooling.   

Interlaminate shear forces were evaluated from a simple beam bending model.  Original 

contribution from this the presented work is the interlaminate force analysis modeled from 

the sheet metal bending moment and the die tooling surface geometry.  Two types of 

geometry were analyzed: linear and parabolic.  The first derivative test determined the 

maximum shear force applied to a linear surface, but was unable to provide a solution for the 

parabolic surface.  The maximum shear force for a parabolic surface is determined by 

graphing the shear force against the shut distance, D.  Following the force modeling, layer 

moment modeling was determined for both linear and parabolic surfaces.   

Based on the mechanical requirements formed from the shear force and layer moment 

equations, expressions for the number of bolts and pins per layer were derived.  The number 

of bolts and pins from Chapter 4 serves as an input for the bolt and pin placement algorithm 

presented in Chapter 5.  
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Chapter 5.  Bolt and Pin Placement Algorithm 

As proposed in Chapter 3, bolts and pins can be used to resist the moment and shear force 

(respectively) between the die tooling layers.  Chapter 4 presented an analysis to determine 

the magnitude of these forces and moments for two different geometry types: linear and 

parabolic.  This chapter presents an algorithm for placing fasteners to meet mechanical 

requirements.  The presented work is a heuristic of the interlaminate requirements for die 

tooling geometry.     

The presented algorithm is designed to import a stereolithography (STL) file of the die 

tooling.  A STL file is a polygon surface approximation of the 3D model called tessellation.  

When creating a slice along the z axis through the STL file, specific parametric points along 

the perimeter of the slice can be evaluated.  Tessellation creates a discrete piecewise surface 

that can be simpler to analyze than a parametric surface.   

This chapter analyzes the 3D model as a STL file.  The slice parameter is an approximation 

of the true surface.  The bolt and dowel pin locations are a result of the polygon surface 

approximation. 

Notation 

Geometric properties: 

o �� Point on slice parameter 

o ���  Bolt zone diameter 

o ���  Pin zone diameter 

o Si Span length 

Mechanical properties: 

o 
� Mass force 

o �� Moment for layer and side i 
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Hardware: 

o ��  Bolt head diameter 

o �� Pin diameter 

o �� Number of bolts 

o �� Number of pins 

Problem Formulation 

Assuming dowel pins only affect shear and locating, and bolts only affect the moment and 

weight, the original objective function proposed in Chapter 3 can be divided into two 

independent objective functions: one for placing bolts and another for pins.  These two 

independent optimization functions loop until all mechanical requirements are satisfied.    

Thus, the original problem proposed in Chapter 3 is decomposed into the following separate 

problems: 

Objective function:  Minimize the �� in ��  
A1. Safe distance from slice edge:  

a. From slice edge to bolt: �� − �� ≥ ��� 

A2. Safe distance between hardware: 

a. Between Bolts: ��� − ��{ ≥ ��� 

A3. Resist interlaminate moment: �� = 
! ∙ ��� − 
% ∙ �� ≤ ∑ �� ∙ 
� 

A4. Satisfy weight support: ∑ �� ∙ 
� ≥ 
�  

A5. Space bolt location along largest span: � �Q	�, … , 	�[ 

Objective function:  Minimize the �� in �� 
B1. Safe distance from slice edge:  

a. From slice edge to dowel pin: �� − �� ≥ ��� 

B2. Safe distance between hardware: 

a. Between Dowel Pins: ��� − ��{ ≥ ��� 
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b. Between Bolts and Dowel Pins: ~��� − ���~ ≥ � �Q��� , ���[ 

B3. Resist interlaminate shear: �� ≥ ���p�01Z��,�01Z{�,…,~01Z�~u56∙8��;<=     (equation 15 and 60) 

B4. Satisfy feature locating: �� ≥ 2 

The proposed algorithms use a heuristic method, where one optimization problem is solved 

completely before the next optimization problem.  Further, a single layer is completely 

solved before progressing to the next.  The success of minimizing either objective function is 

improved with a larger geometric feasible space.  Thus, assuming no undercuts, the smallest 

geometric feasible space occurs on the layers that contact the sheet metal first.  The moment 

constraint depends on the geometric location of the bolts, whereas the shear force is not 

dependent on the geometric location of the pins.  Furthermore, placing dowel pins first 

reduces the geometric feasible space for bolts.  Pins only require that the geometric feasible 

space exists.  Therefore, the bolting algorithm is solved first 

Bolt Location Algorithm 

A flowchart of the presented bolt location algorithm is provided in Figure 29.  The remainder 

of this section will step through each part of the algorithm in greater detail.  
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Figure 29.  Bolt Location Algorithm  
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Layer Analysis 

The presented algorithm loops for layers ‘i’ from 1 to N.  The smallest geometric feasible 

space occurs at layers first to contact the sheet metal.  The algorithm analyzes from the 

contact layer and continues until no additional layers exist to allow the geometric feasible 

region to grow from layer to layer.  If no layers exist, the layer analysis can stop looping and 

the program can terminate. 

Within the layer analysis, there are three primary subsections: layer moment, evaluate 

feasible region/constraints, and place bolt.  These subsections loop until all moments within a 

layer are satisfied.   

Layer Moment 

As previously stated, the presented algorithm applies to any arbitrary, non-undercut edge for 

the ‘contact region.’  The contact region is the edge of the die that comes in contact with the 

sheet metal.  The layer moment for the current layer is based on the summation of the 

previous layer thicknesses and the width for the layer at the point of contact.  The calculation 

for the moment arm for each layer is discussed in Chapter 3, equation 9.  Moment constraint, 

A3, is calculated for each layer. 

Evaluate Feasible Region/Constraints 

The mechanical constraint for the bolt algorithm includes moment and weight support.  If the 

weight support greater than the moment, then the weight support is evaluated for the layer; 

otherwise the moment is evaluated for the layer mechanical constraints.  When there are two 

contact regions, two moments will occur and counteract on one another.  Therefore, solving 

for the contact region with the highest moment potentially satisfies the other contact region. 

If the moment does exist, ‘feasible region’ is implied on the slice.  A feasible region is a slice 

boundary offset.  Boonsuk developed offset boundaries for locating sacrificial supports 

within the feasible region of the slice in his research (Boonsuk & Frank, 2009).  Similar to 

Boonsuk’s research, an offset of the intersection between the two layers will be developed.  
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The offset distance from the slice boundary is equal to ���.  The safety factor is a set 

distance that a feature can be from the bolt head. 

The algorithm will create a Boolean operation to determine the current ��offset: ��2� ∩ �� 
for B = 1 … E.  If n is zero, the union is ignored.  If the previous layer has bolts (��2�…��), 

the boundary will be developed around the previous layer’s (��2�) bolt locations based on the 

union of the offset boundaries.   

For a given z height, an offset of the slice boundary is projected inward.  The z height and 

offset boundary are both predetermined by the user.  The offset feasible region for �� is 

defined as the intersection of hardware in ��2� and the slice boundary of ��.  This prevents 

hardware from overlapping in layer interfaces.  Hardware secures only two layers together to 

create less variability in the choices of hardware and securing locations. 

Place Bolt 

Find the largest span 

The slice is first divided into a span (	�).  The span length is the vertical distance along the y 

axis shown in Figure 30.  

 

Figure 30. Bolt black line along the contact edge is the span 

The largest span is chosen for evaluation: � �Q	�, … , 	�[.  The divide occurs through the 

center of a bolt, Figure 31.   

y 

x 
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                               (a)                                                                     (b) 

Figure 31. Spans shown for (a) 1 bolt and (b) 2 bolts.  Note that if there are n bolts, then there 
are n+1 spans. 

Find intersection of middle third of span, feasible region 

The geometric constraint at minimum requires a safe distance offset between hardware 

(constraint A2).  Even though the algorithm assumes a rigid body for bolting, the system 

would rather have bolts spread out than clumped right next to one another.  Although 

satisfying the layer moment constraint requires placing bolts on the feasible region closest to 

the contact edge, the bolts should not be clumped next to one another.  The middle 1/3 of the 

largest span is chosen to search for points on the feasible region closest to the contact edge as 

a method of spacing the bolts along the feasible region.  The middle third of the largest span 

is an arbitrary zone size.  If middle 1/3 is too restrictive, the zone could be changed to the 

middle 1/2.  Since one bolt is placed at a time, the one third distance rule allows the 

minimum distance between hardware to be one third of the largest span’s distance.  The 

middle 1/3 satisfies that hardware will not be placed within one third of the largest distance.  

The middle 1/3 prevents bolts from being located too close to one another.  The first bolt is 

placed by sectioning the layer into thirds as shown in Figure 32.   

S1 

S2 

S1 

S2 

S3 
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Figure 32. Middle third of slice – bold dotted lines is the middle third zone, bold solid line is 
the span 

Is this ‘feasible span’ a null set? 

In some cases, the middle zone may not exist as shown in Figure 33b.  If this occurs, a search 

line will determine the highest point of the edge shown in Figure 33c.  The search line is a 

straight edge, parallel to the contact edge of the die tooling.   

       

                    (a)                                                (b)                                             (c) 

Figure 33.  (a) Slice with offsets, (b) middle third zone, and (c) search line to find highest point 
outside middle zone 

Find highest point in span feasible region 

If the middle third is not a null set, the highest point of the middle third is determined.  To 

offset a moment in the standard moment constraint, A3, the moment arm distance 8��}= 

should be as high as possible.  In the slice coordinate system, the y-axis is parallel to the 
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contact edge, Figure 34.  The distance along the x-axis in the middle third zone must be as 

large as possible to offset the predetermined layer moment.  

 

 

Figure 34. Slice x and y coordinate system 

Create bolt location at point closest to contact edge 

The bolt is placed on the offset boundary at the shortest distance from the point closest to the 

contact edge in the middle third, shown in Figure 35b.  Once the bolt is placed, the moment 

arm will be calculated to determine if it is satisfied. 

                                  

                                 (a)                                                                         (b) 

Figure 35. (a) Search line searches for point closest to the contact edge and (b) bolt is placed 
at highest point 

x 

y 
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The point closest to the contact edge in any geometry can occur in three different ways: one 

point, multiple points, and straight line.  If the highest point chosen is a single point, 

determining the bolt location is relatively easy.  If multiple points are detected at the same 

height within the zone, only one point can be chosen, Figure 36a.  For simplicity, the point 

nearest the center of the zone is chosen.  If a straight line is detected in the zone, the bolt will 

be placed on the center of the offset boundary, Figure 36b. 

                      

                                     (a)                                                                (b) 

Figure 36. (a) Multiple points detected and (b) a straight line detected 

After the bolt is created at the slice high point, the algorithm loops back to the ‘Evaluate 

Feasible Region/Constraints’ section.  If the bolt does not satisfy the mechanical constraints, 

an additional bolt must be placed on the slice.  In this case, a span slit is introduced to evenly 

space the bolts.  Figure 37a displays the first bolt placed by the previous condition.  The dark 

dotted line is the bolt’s location with respect to the slice width, creating two spans.  The 

larger of the two spans is chosen for the split – in this case, the top span.  Figure 37b shows 

the middle third of the span being chosen for the search line (shown in red).  The middle 

third is always chosen to ensure that a series of bolts are not placed directly next to each 

other.  The highest point is selected for the second bolt location. 
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                      (a)                                              (b)                                            (c) 

Figure 37. (a) Defining spans, (b) middle third of largest span and use search line for highest 
point, (c) place second bolt at this location 

After the second bolt is placed on the slice, the slice is reevaluated for the moment condition.  

If the second bolt does not satisfy the moment condition, a third bolt must be placed on the 

slice.  Any number of bolts after the first bolt follows the same span splitting conditions.  

Figure 38a displays the span split for the previous bolts.  A search line detects the highest the 

highest point within the middle third of the largest span, Figure 38b.  The highest point is 

chosen for the location of the third bolt.  Span splitting continues until the layer moment is 

satisfied. 

  

                  (a)                                              (b)                                            (c) 

Figure 38. (a) Defining spans, (b) middle third of largest span and use search line for point 
closest to the contact edge, (c) place third bolt at this location 
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Pin Location Algorithm 

Dowel pin location follows a different, but similar algorithm to the bolt location algorithm.  

Figure 39 is an overview of the presented dowel pin location algorithm.  

 

Figure 39. Dowel pin Location Algorithm  
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The offset boundary is set around previous hardware.  Whenever hardware is placed in a 

slice, an offset equal ��� or ��� is placed around the hardware by a Boolean subtraction of a 

circle from the feasible region.  It is important to note that an offset would be placed around 

the bolt or pin after being placed. 

Assuming rigid body, the layer will achieve shear strength when an adequate number of pins 

are placed between layers.  Similar to bolts, pins should be spaced along the geometric 

feasible space along slice.  Ideally, pins should be placed at all major features for proper 

locating.   

However, based on the hardware dimensions and the layer geometry, there may be cases 

where pins cannot be placed on the desired features.  Figure 40 displays a different pin offset 

boundary.  In this case, the top feature cannot contain a pin due to size requirements.  In this 

case, pin locating is lost.  Alternatives include using smaller pins or bolts and redesigning the 

desired geometry. 

 

Figure 40. Dowel pin offset boundary for different dowel pin dimensions 

Layer Start 

Layer start is identical to the bolt location algorithm.  The dowel pin algorithm loops for 

layers ‘I’ from 1 to N.  The largest geometric feasible space occurs at layers first to contact 

the sheet metal.  The algorithm analyzes from the contact layer and continues until no 

additional layers exist.  If no layers exist, the layer analysis can stop looping and the program 

can terminate. 
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Within the layer analysis, there are three primary subsections: layer shear, evaluate feasible 

region/geometries, and place pin.  These subsections loop until the layer shear is satisfied.   

Layer Shear 

If assuming no undercuts, the die has a predetermined amount of dowel pins required for 

application.  The numbers of dowel pins are given in equation 9, �� ≥ 0T56∙8��;<=.  This 

constitutes the major difference between bolt and pin placement: the number of pins can be 

easily determined beforehand and is not a function of pin location. 

Evaluate Feasible Region/Geometries 

Re-compute feasible boundary with pins on layers Li-1 and Li 

Similar to the bolt location algorithm, a pin boundary must be determined.  The bolt offset 

boundary was determined based on the slice geometry.  The pin feasible region is an offset 

from the bolt feasible region.  If a previous layer contains pins, the offset will be set around 

the pins.   

Find all high points for slice 

The algorithm will loop to search for all features for a contact region, J.  As previously 

discussed, a dowel pin is ideally located at every feature.  A search line, similar to that used 

for bolt locating, is used for dowel pin locating.  The search line detects peaks. 

Create pin location at high points 

Creating a dowel pin at the high points along a slice allows the algorithm to satisfy the 

feature locating dowel pin constraint.  A dowel pin is placed on the dowel pin offset 

boundary at the shortest distance from the point of contact, shown in Figure 41. 
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                                  (a)                                                                      (b) 

Figure 41. (a) Point closest to contact edge for dowel pin locating and (b) shortest distance 
from peak to dowel pin offset boundary  

The dowel pins required for each peak loops until all features have been satisfied.  A greater 

number of dowel pins may be placed on the slice if more features exist than dowel pins 

required for functionality.   

Is J ‘shear’ satisfied? 

If all features have been satisfied from above and the required number of dowel pins has been 

met or surpassed for that given layer, the layer algorithm continues to the next layer. 

However, in some cases, more pins may be required than features on the slice.  An example 

of slice geometry with only one feature is shown in Figure 42.  Two dowel pins are required 

at minimum for each layer.   

 

Figure 42. Only one peak with at least two dowel pins required 
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In this case, the slice is split evenly for the number of dowel pins required for the slice shown 

in Figure 43. 

              

                   (a)                                                 (b)                                               (c) 

Figure 43. Evenly spacing dowel pins: (a) two required dowel pins, (b) three required dowel 
pins, and (c) four required dowel pins 

The same principle applies if there is more than one feature, but additional dowel pins are 

still required.  Figure 44 is an example of a two feature slice.   

 

Figure 44. Two feature slice 

If three or more dowel pins are required for this slice, the slice is divided into an equal 

number of spaces.  The spaces equal the remaining number of dowel pins.  Figure 45 displays 

the additional dowel pin placement for split dowel pin distances.  The red dots represent the 

dowel pins placed for feature location.  The blue dots represent the additional dowel pins 

placed on the slice.   
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                (a)                                              (b)                                                (c) 

Figure 45. More than two dowel pins required for two a two feature slice: (a) one additional 
dowel pin, (b) two additional dowel pins, and (c) three additional dowel pins 

Bolt and Dowel Pin Summary 

The primary objective of this research is to develop a process planning method for die 

manufacture, with improved interlaminate stress compared to existing methods.  Chapter 4 

accomplished the second half of this objective by determining the bolt and dowel pin 

locations within each slice.   

The two sub-objective functions were divided into two different parts with their own 

constraints: minimize the number of bolts and minimize the number of dowel pins.  

Mechanical and geometric constraints were determined for each objective function to 

determine the adequate placement of bolts and dowel pins in each slice. 

The expressions for the number of bolts and pins per layer were derived from Chapter 4 and 

served as an input for the bolt and pin placement algorithm presented in this chapter.  

Chapter 6 presents a case study of a specific die tooling geometry using the process planning 

method presented here. 
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Chapter 6.  Case study 

Chapter 4 discusses the methodology of determining shear and compressive forces for 

bending sheet metal.  Based on those force components, the number of bolts and pins is 

determined.  Chapter 5 discusses the algorithm for placing the bolts and pins in each layer to 

withstand adequate forces.  This chapter applies the results of Chapters 4 and 5 by presenting 

a case study for specific die tooling.  The case study discusses the steps to complete the 

previously designed process planning for laminated die manufacture to automatically provide 

adequate inter-layer strength using a minimum number of fasteners.  The specific die tooling 

considered in this chapter has been designed to incorporate both linear and curved surfaces in 

a complex manner (i.e. the ‘male’ die is not entirely convex), shown in Figure 46.   

   

                                          (a)                                                              (b) 

Figure 46. Case study die tooling geometry with eight layers for both female and male halves 

The following specifications are assumed:  

• Steel plates with 0.5 inch thickness for layers  

• Sheet metal thickness of 0.125 inches 

• Steel pins with a 0.125 inch diameter  

Layer 1 

Layer 1 

Layer 2 

Layer 3 

Layer 4 

Layer 5 

Layer 6 

Layer 7 

Layer 8 

Layer 4 

Layer 6 

Layer 7 
Layer 8 

Layer 3 

Layer 2 

Layer 5 
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• Steel 6-40 inch bolts   

Die Half Contact Forces 

As discussed in Chapter 4, the pin force and layer moment equations are based on the die 

tooling geometry.  Figure 47 displays the female die tooling dimensions in unit inches.   

 

Figure 47. Female die tooling dimensions in inches 

Figure 48 displays the male die tooling dimensions in unit inches.  The following 

calculations for pin force are based on both female and male die tooling dimensions. 

z 

x 
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Figure 48. Male die tooling dimensions in inches 

Contact Forces 

The female die has four contact points, noted by C1 – C4 in Figure 49a.  The contact forces 

(resultant force, shear force, and compressive force) change over time during sheet metal 

bending.  The number of pins per equation 1, for the male die is the same as the female die 

given in Table 7.  The male die has four contact points similar to the female die, however, C3 

and C4 are shared by the same point as shown in Figure 49b.     

z 

x 
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                                     (a)                                                                       (b) 

Figure 49. (a) Female die contact points and (b) male die contact points  

The shear force for all contact points is determined below from discussions in Chapter 4.  

The number of pins can be determined from the maximum pin force for the contact points.  

As previously mentioned, the force calculations for the four contact points are the same for 

both female and male dies since the geometry is the same. 

Contact Point 1 

The moment equation for contact point 1 is plastic because the radius of curvature is very 

small and is assumed to be a point.  The required moment to bend sheet metal given in 

equation 11 is shown below. 

� = prt,jjj ÃÄ�Å<uQÆ �N[Qj.�wt �N[<
m = 2,970 HF ∙ BE    (50) 

Based on the edge geometry, the maximum pin force occurs at the shutting height, � (from 

equation 44), shown below where the steel-to-steel coefficient of static friction is 0.74 

(Young & Freedman, 2004). 

� = 2.5 BE − © w.t �Np<.È �Å¤ �Å uª 80.74 + √0.74w + 1= ≈ 0.52 BE-ℎ)A  (51)  

Given the sheet metal moment, the maximum pin force for a linear edge to bend sheet metal 

from equation 43 from contact point 1 is shown below. 

C1 

C2 C3 

C4 

C1 
C2 C3 C4 
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�Q[,�]£ = Q2,970 HF ∙ BE[ © p<.È �Å¤ �Å uwQw.t �N[ª � �¸Qj.sm[<���j.sm� ≈ 749 HF  (52)  

The forces over time as the sheet metal is bending over the linear edge is given in Figure 50 

where 
! is the shear force, 
% is the compressive force, 
 is the resultant force, and 
� is the 

force on the pin.  The maximum pin force calculated above relates to the bold black line in 

Figure 50. 

 

Figure 50. Contact point 1 forces 

Contact Point 2 

The same bending moment occurs, 2,970 lb·in.  Similarly, the maximum pin force occurs at a 

D value given in equation 53. 

� = 1 BE − © � �Np ¤ �Å<.È �Åuª 80.74 + √0.74w + 1= ≈ 0.50 BE-ℎ)A  (53)  

The maximum pin force for contact point 2 is given in equation 54. 
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�Q[,�]£ = Q2,970 HF ∙ BE[ © p¤ �Å¤ �ÅuwQ� �N[ª � �¸Qj.sm[<���j.sm� ≈ 2,947 HF  (54)  

The forces over time as the sheet metal is bending for contact edge 2 is given in Figure 51 

where 
! is the shear force, 
% is the compressive force, 
 is the resultant force, and 
� is the 

force on the pin.  The maximum pin force calculated above relates to the bolt black line peak 

in Figure 51. 

 

Figure 51. Contact point 2 forces 

Contact Point 3 

The same bending moment occurs for contact point 3, 2,970 lb·in.  The maximum pin force 

occurs at a D value given in equation 55. 

� = 1 BE − © � �Np¤ �Å¤ �Åuª 80.74 + √0.74w + 1= ≈ −1.0 BE-ℎ)A  (55) 

Since the die shut height, �, cannot be negative, shear is evaluated when � =  0.  Therefore, 

from equation 24, the maximum pin force for contact point 3 is given equation 56. 
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�Q[ = Q2,970 HF ∙ BE[ ∙ Q�2j[2Ê ¤ �Å�¤ �Å¤ �Å�Ëj.sm
Ê ¤ �Å�¤ �Å¤ �Å�Ë<�Q�2j[<

≈ 386 HF  (56) 

The forces for contact point 3 clearly peak when the die is shut (D = 0 inches) shown in 

Figure 52.   

 

Figure 52. Contact point 3 forces 

Contact Point 4 

The moment equation for contact point 4 is elastic/plastic because the point is curved.  The 

die tooling is graphed and the minimum of the elastic and plastic moment values were used 

in the shear force equation (equation 38).   

The maximum shear force occurred at the end of the bending.  At this point the moment was 

plastic.  The required moment to bend sheet metal is given in equation 11. 

� = prt,jjj ÃÄ�Å<uQÆ �N[Qj.�wt �N[<
m = 2,970 HF ∙ BE    (57) 
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The maximum shear force for a linear point to bend sheet metal is given in equation 40. 


!Q�[ = 2,970  HF ∙ BE
ÌÍ
Î�w¸Qw.t �N[Qj.�Æ �N[2wQj.� �N[�2Ê¨ Ï.¤Ð �Åp ¤<.È �ÅuËQj.sm[

�w¸Qw.t �N[Qj.�Æ �N[2wQj.�Æ �N[�<�Ê¨ Ï.¤Ð �Åp ¤<.È �ÅuË<
ÑÒ
Ó  ≈ 1,019 HF  

 (58)  

 

Figure 53. Contact point 4 forces 

Moment Calculations 

The first step in the bolt location algorithm in Figure 29 is to calculate the layer moments. 

The maximum layer moment is determined by maximizing D give the layer height, h, and the 

width, w.  The female die has eight layers, but only seven layer interfaces for hardware 

placement.  Figure 54 displays a few of these intersections. 
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                       (a)                                                (b)                                          (c) 

Figure 54. Female die layer 1 (a), layer 4 (b), and layer 8 (c) 

Maximizing D for linear surface shear and compressive forces (equations 24 and 25) and 

parabolic surface shear and compressive forces (equations 38 and 39) were calculated by 

using the maximize function of goal seek in Microsoft Excel.  Female layer moment 

calculations for each layer are summarized in Table 1 in units of lb·in.  Extensive layer 

moment calculations are provided Appendix II. Moment Calculations for Female Die.   

Table 1. Female die moment calculations for each layer (lb·in) 

Contact Point 1 Contact Point 2 Contact Point 3 Contact Point 4

Layer 1 102.4 - - -398.7

Layer 2 614.8 - - 810.1

Layer 3 1191.6 - - 2018.8

Layer 4 1834.8 898.9 -44.8 3227.5

Layer 5 2512.4 2082.8 281.5 4436.3

Layer 6 3209.6 873.2 -3659.8 5645.0

Layer 7 3918.8 2270.2 -3147.9 6853.7  

If the moment layer is negative, a moment does not exist.  However, a bolt must still be 

placed at the interface between the two layers.  The bolt force must withstand the mass of the 

current layer and the previous layers.  An overview of layer the mass for each contact point, 

calculated from equation 2, is provided in Table 2 where the density of steel is 0.284 ¿¼�N� 

(Groover, 2002).   

C1 

C2 C3 

C4 C1 

C2 C3 

C4 C1 

C2 C3 

C4 
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Table 2. Female die layer mass (lb) 

Contact Point 1 Contact Point 2 Contact Point 3 Contact Point 4

Layer 1 1.24 - - 1.15

Layer 2 1.47 - - 1.26

Layer 3 1.69 - - 1.51

Layer 4 1.92 1.95

Layer 5 2.14 2.79

Layer 6

Layer 7

Layer 8

0.63

1.34

9.02

9.02

9.02  

The male die has eight layers with seven layer interfaces for hardware placement.  Figure 55 

displays the layer sequence for the male die. 

         

                      (a)                                              (b)                                               (c) 

Figure 55. Male die layer 1 (a), layer 4 (b), and layer 8 (c) 

Male layer moment calculations for each layer are summarized in Table 3 in units of lb·in.  

The same process as the female die is used for determining the maximum layer moment.  

Extensive layer moment calculations are provided in Appendix V. Moment Calculations for 

Male Die.   

C1 C2 C3 C4 
C1 C2 C3 C4 C1 C2 C3 C4 
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Table 3. Male die layer moment calculations for each layer (lb·in) 

Contact Point 1 Contact Point 2 Contact Point 3 Contact Point 4

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

1.31

1.68

1.43

2.84

5.81

6.29

6.63

9.02

9.02

9.02  

Similar to the female die, the male die has negative moments for particular contact points.  

Therefore, the mass of that layer and the previous layers must be considered for bolt 

placement.  The mass for the male die layers is given in Table 4. 

Table 4. Male die layer mass (lb) 

Contact Point 1 Contact Point 2 Contact Point 3 Contact Point 4

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

1.31

1.68

1.43

2.84

5.81

6.29

6.63

9.02

9.02

9.02  

Bolt and Pin Algorithm 

The bolt used is a standard #6-40 inch stainless steel bolt with a head diameter of 0.226 

inches.  Stainless steel material for bolts is arbitrary.  The user can input any bolt material 

type.  All bolt offsets are one bolt head diameter.  Bolt dimensions were obtained from 

McMaster-Carr.com (Socket Cap Screws).  The total offset from the center point of the bolt 

is 0.339 inches.  First, the shear area, stiffness, and preload force of the bolt are determined.   

 ! = 9m n0.112 BE − pj.rsmtmj uvw = 0.01 BEw     (59) 
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f� = phj,jjj,jjj ÃÄ�Å<u8j.j� �N<=j.wt �N ≈ 723,854 ¿¼�N  (60) 


������ = 723,834 ¿¼�N ∙ 0.025 BE ∙ ijhij ≈ 3,016 HF  (61) 

Equations 59, 60, and 61 are inputs for the bolt force. 


� = prt,jjj ÃÄ�Å<2h,j�i ¿¼u8j.j� �N<=�.t ≈ 369.9 HF  (62) 

Bolt and Pin Locating Tool 

Chapter 5 discusses the bolt and pin placement requirements.  However, the bolt and pin 

locating tool is not a deliverable of these requirements.   

The program simply provides an exact bolt or pin location to reduce error in determining this 

location.  The locating tool is pre-existing code that determines the feasible boundary, the 

intersection of span with feasible region, and the high points in feasible span.  The inputs are 

the STL file, slice height, offset value, span location, previous bolt and dowel pin 

coordinates, and ��� and ��� values.  The program outputs a single coordinate at the high 

point.  Figure 56 displays a trimetric view of the STL female and male dies with their 

associated origin in the program.  The program is simply a tool for determining bolt and 

dowel pin coordinates.   

                        

                               (a)                                                                    (b) 

Figure 56. STL file with origin of female die (a) and male die (b) 
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Sample Calculation: Female Die Layer 4, Contact Point 1 

The moment calculations for the female and male die tooling were previously determined.  

The second part (Evaluate Feasible Region/Constraints) and third part (Place Bolt) of the bolt 

locating algorithm in Figure 29 is dependent on the slice geometry.  The input from the first 

part of the bolt locating algorithm for contact point 1 is the shear and compressive forces for 

layer 4 are shown in Figure 57.   

 

Figure 57. Layer 4 of female die 

The layer moment is the mechanical constraint for the initial algorithm loop for contact point 

1.  The layer moment for contact point 1 is 1,834.8 lb·in from Table 1.  The constraints are 

not satisfied since a bolt has not been placed on this layer.  Using the location program 

discussed earlier, the offsets for the bolts in Li-1 (Layer 3) have been subtracted from the 

current layer shown in Figure 58.  If multiple contact points existed on this layer, the largest 

layer moment would be evaluated first.  However, in this case, there is only one contact point 

to evaluate, therefore, contact point. 

When placing the bolt, the largest span is first evaluated.  The span in the y axis for this case 

is (0 inches, 8 inches).  Contact point 1 is along the lower gray edge of Figure 58.  The 

feasible region exists, therefore the highest point is chosen to maximize the layer moment.  

The maximum distance in the x axis is chosen.  The first bolt will be placed on the feasible 

region in the middle third of the slice.  Therefore, the bottom blue dot is chosen for the first 

bolt. 

 

Figure 58. Contact point 1 bolt location for span 0 inches to 8 inches 

C4 C3 C2 C1 
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The bolt locating algorithm loops back to compute mechanical constraints.  Equation 63 

displays the layer moment resistance from one bolt.  The mechanical constraints are not 

satisfied and a second bolt must be placed on the layer. 

�� = 1834.8 lb ∙ in ≤ 369.9 HF ∙ 1.261 BE ≈ 466.4 Hb ∙ in   (63) 

The first bolt and its offset region are placed.  The first span split occurs.  The y ranges are (0 

inches, 3.72657 inches) and (3.72657 inches, 8 inches).  The largest range is (3.72657 inches, 

8 inches), therefore, the second bolt will search in the middle third of this region.   

 

Figure 59. Contact point 1 bolt location for span 3.72657 inches to 8 inches 

The bolt locating algorithm loops to compute mechanical constraints.  Equation 64 displays 

the layer moment resistance from the second bolt.  The mechanical constraints are not 

satisfied and a third bolt must be placed on the layer. 

�� = 1834.8 lb ∙ in ≤ 369.9 HF ∙ Q1.261 BE + 1.261 BE[ ≈ 932.9 Hb ∙ in  (64) 

The second bolt and its offset region are placed in the slice.  The second span split occurs.  

The y ranges are (0 inches, 3.72657 inches), (3.72657 inches, 5.72657 inches), and (5.72657 

inches, 8 inches).  The largest range is (0 inches, 3.72657 inches), therefore the third bolt will 

search in the middle third of this region. 

 

Figure 60. Contact point 1 bolt location for span 0 inches to 3.72657 inches 
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The bolt locating algorithm loops to compute mechanical constraints.  Equation 65 displays 

the layer moment resistance from the third bolt.  The mechanical constraints are not satisfied 

and a fourth bolt must be placed on the layer 

�� = 1834.8 lb ∙ in ≤ 369.9 HF ∙ Q1.261 BE + 1.261 BE + 1.261 BE[ ≈ 1399.3 Hb ∙in  (65) 

The third bolt and its offset region are placed in the slice.  The third span split occurs. The y 

ranges are (0 inches, 1.86329 inches), (1.86329 inches, 3.72657 inches), (3.72657 inches, 

5.72657 inches), and (5.72657 inches, 8 inches).  The largest range is (5.72657 inches, 8 

inches); therefore the third bolt will search in the middle third of this region. 

 

Figure 61. Contact point 1 bolt location for span 5.72657 inches to 8 inches 

The bolt locating algorithm loops to compute mechanical constraints.  Equation 66 displays 

the layer moment resistance from the fourth bolt.  The mechanical constraints are satisfied 

and the program ends for layer 4. 

�� = 1834.8 lb ∙ in ≤ 369.9 HF ∙ Q1.261 BE + 1.261 BE + 1.261 BE + 1.261 BE[ ≈1865.8 Hb ∙ in  (66) 

Bolt locations for the female die are summarized in Appendix III. Bolt Locations for Female 

Die.  Bolt locations for the male die are summarized in Appendix VI. Bolt Locations for 

Male Die.  The total number of bolts to satisfy the layer moment conditions for the female 

die is given in Table 5.   

y 

x 
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Table 5. Number of bolts for female die          

C1 C2 C4 Total per layer

Layer 1 1 - 1 2

Layer 2 2 - 3 5

Layer 3 4 - 6 10

Layer 4 4 6 9 19

Layer 5 4 9 8 21

Layer 6 2 - 2 4

Layer 7 2 - 3 5

66

Bolt Summary

Total Bolts              

The total number of bolts to satisfy the layer moment conditions for the male die is given in 

Table 6. 

Table 6. Number of bolts for male die 

C2 C4 Total per layer

Layer 1 2 1 3

Layer 2 6 1 7

Layer 3 2 - 2

Layer 5 4 - 4

Layer 6 3 - 3

Layer 7 4 - 4

23

Bolts per Layer

Total Bolts  

The number of bolts would change for the same die geometry based upon the bolt material.  

In this case, stainless steel bolts were arbitrarily chosen.  A bolt material with a higher tensile 

strength, �, would reduce the number of bolts for each die half for the given geometry.  This 

is simply an example of the die tooling design to resist delamination from bending forces. 

Number of Pins  

Per equation 1, assuming a pin safety factor of 1.25, a summary of pins for the given contact 

point geometry is given in Table 7.  This applies to both the female and male die halves since 

the geometry is the inverse of one another. 
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Table 7. Contact points number of pins 

Number of Pins

Contact Point 1 2

Contact Point 2 6

Contact Point 3 2

Contact Point 4 2  

Female Die Counteracting Pin Forces 

The pin forces previously calculated were for each independent contact point.  However, in 

reality, there are two sides to each layer.  Pin force may occur only on either contact point.   

The female die has one case of counteracting pin forces.  Contact points 2 and 3 have 

counteracting pin forces as shown in Figure 62.  To conservatively estimate the number of 

pins required for counteracting pin forces, the number of pins calculated for each contact 

point are summed together.  In this case, contact point 2 requires six pins and contact point 3 

requires two pins, therefore, eight pins are required.   

 

Figure 62. Counteracting shear forces on C2 and C3 

Male Die Counteracting Shear Forces 

Using the same principles as shown for the female die, the total number of pins used is the 

sum of pins from each contact point.  For instance, the direction of shear forces for C1 and C2 

in Figure 63.  C1 requires two pins and C2 requires six pins, therefore, eight pins are used for 

each layer. 

C2 C3 
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Figure 63. Counteracting shear forces on C1 and C2 for the male die 

Similarly, the counteracting moment between contact points C3 and C4 occur in layers 1 and 

2.    C3 requires two pins and C4 requires two pins.  Therefore, four pins will be used for each 

layer. 

 

Figure 64. Counteracting shear forces on C3 and C4 for the male die 

Lastly, the counteracting moment acting on the male die occurs on layers 3 – 5 between 

contact points C1 and C4 result in a total of four pins. 

 

Figure 65. Counteracting shear forces on C1 and C4 for the male die 

C2 C1 

C3 

C1 C4 

C4 
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Once all bolt locations are determined, the pin locations will be determined.  Using layer 4, 

contact point 1, two pins are required for this layer.  Therefore, from Chapter 5, the layer will 

be divided into two halves.  The pins will be placed on either the maximum or the minimum 

location on the x axis.  Bolts from layers 3, 4, and 5 are viewed for feasible regions.  The first 

pin is placed at location (0.339, 2.1875). 

 

Figure 66. Contact point 1 pin location for span 0 inches to 4 inches 

The span is split from 4 inches to 8 inches to determine the feasible location for the second 

pin.  Figure 67 displays two feasible locations for the second pin.  The second pin is placed at 

location (1.261, 6.2743). 

  

Figure 67. Contact point 1 pin location for span 4 inches to 8 inches    

Using the bolt locations in Appendix III and Appendix VI and dowel pin locations in 

Appendix IV and Appendix VII, the female and male die halves can be assembled.  Figure 68 

displays layer 5 and layer 6 from the female die with proper bolt and dowel pin locations.  

Figure 69 displays layer 5 and layer 6 from the female die assembled together.   

 

y 

x 

y 

x 
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                                       (a)                                                                    (b) 

Figure 68. (a) Female die layer 5 bolt and dowel pin locations and (b) female die layer 6 bolt 
and dowel pin locations 

 

Figure 69. Female die layer 5 and layer 6 bolted together 

Case Study Summary 

The bolt and pin placement algorithm is not an optimization algorithm, rather a heuristic 

method for placing bolts and pins to achieve adequate interlaminate strength.  The case study 

y 

x 

y 

x 

y 

x 

x 

z 
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presented in Chapter 6 stepped through the process planning for one particular die tooling.  

Based on the die tooling geometry, the pin force and the layer moment were determined.  The 

quantity and placement of bolts was determined based upon the bolt location algorithm 

introduced in Chapter 5.  The final female and male die tooling with proper bolt and dowel 

pin locations are shown in Figure 70 and Figure 71. 

      

                                   (a)                                                                  (b) 

Figure 70. (a) Solid female die with bolts and dowel pins and (b) transparent view of bolts and 
dowel pins 

         

                               (a)                                                                          (b) 

Figure 71. (a) Solid male die with bolts and dowel pins and (b) transparent view of bolts and 
dowel pins 
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The number of pins was determined from the methodology introduced in Chapter 3 and the 

pin force introduced in Chapter 4.  The pin location algorithm from Chapter 5 was utilized 

for the die tooling in Chapter 6. 
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Chapter 7.  Discussion   

The application of rapid die tooling branches from the excessive lead time for adequate 

design and tooling repair.  From Walczyk’s work (Walczyk & Hardt, 1998), laminated die 

tooling requires four essential elements: (1) automation, (2) layer registration, (3) securing 

for tool rigidity, and (4) disassembly.  This thesis presents a process planning method to 

automatically provide adequate interlaminate strength using a minimum number of fasteners. 

The proposed process planning inputs die geometry, predetermined layer thickness, die 

material properties, predetermined hardware size, and sheet metal properties.  The algorithms 

provided by this research output specific bolt and dowel pin locations for adequate 

interlaminate strength.  Specific locations for bolts and dowel pins accomplish elements 2 

and 3 of Walczyk’s four essential elements for rapid die tooling. 

The quantity and location of bolts and dowel pins is relatively simple, as explained in 

Chapter 3.  One contribution of this thesis is solving for the mechanical requirements to bend 

sheet metal by predicting the shear and compressive forces on laminated tooling.  Methods 

existed to predict compressive forces for sheet metal bending.  However, a model to predict 

shear and compressive forces for a given die tooling geometry as a function of shut height 

did not exist prior to this research.   

Using the general shear and compressive force equations, forces for linear and parabolic die 

tooling geometries were adapted.  Maximum pin force was derived for linear geometry by 

use of the first derivative test.  For a parabolic surface, a graphical approach was taken to 

find the maximum pin force by varying input parameters   and ?. 

Boothroyd’s energy model of bending sheet metal was compared to the proposed method of 

bending sheet metal.  Boothroyd’s output was average compressive force.  For the given 

input geometry, Boothroyd’s method determined an average compressive force of 3,800 lb, 

whereas the proposed model outputted an average compressive force of 5,024 lb.  The 

variability in the compressive force results can be attributed to the proposed force model 

fitting a parabolic surface to a curved surface.  Furthermore, the proposed model is 
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conservative in force predictions.  Future work can experimentally measure the magnitude of 

shear and compressive forces during sheet metal bending. 

Upon determining the shear and compressive forces for the inputted die geometry, bolt and 

dowel pin location algorithms were developed.  The bolt location algorithm was developed to 

determine the number and location of bolts for each interlaminate surface.  The dowel pin 

location algorithm determines their location for each interlaminate surface.  Since bolt 

location is an input to satisfying the layer moment mechanical requirement, the bolt location 

algorithm is conducted first.  Dowel pin locating performs layer registration as well as resists 

interlaminate shear force.  The dowel pin location algorithm searches for slice peaks and 

places a pin at the nearest feasible region.  Future work includes computer implementation of 

both the bolt and dowel pin location algorithms. 

A case study described the process planning method for die tooling.  The design used 

relatively thick sheet metal (0.125 inch thick) to demonstrate the high shear and compressive 

forces acting on the layers.  Small fasteners were used to display scalability of die tooling; a 

larger die would use correspondingly larger fasteners.  Future work in this area includes 

comparing the tool life laminated dies with that of solid die tooling. 

The research presented in this thesis provides as a method of shortening the time period from  

design to manufacturing of die tooling.  Future work in the sheet metal bending area for rapid 

die tooling includes adaptive layer registration.  The current model only applies to die tooling 

with geometry heights at multiples of the layer thickness.  This is not always convenient in 

practice.  Also, this model assumes only one bolt and one dowel pin size is used.  In some 

cases, it may be useful to have a variety of bolt and dowel pin sizes.  Future work in the 

surface geometries for force analysis can be studied as well as surface geometry 

identification.   Lastly, the presented work can be adapted to other applications for rapid 

manufacturing where layer disassembly is a requirement.  Other mechanical applications of 

this method could include punch and drawing dies, lost foam molds, thermoforming molds, 

and fixtures. 
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Appendix I. First Derivative Test: Linear Surface 

The function, pin force over die shutting distance, is derived for the point in which the slope 

is zero. 

�0TQW[�� = 0  (67) 

The first derivative of the total pin force is evaluated in equation 68. 

³´µQ¶[³· = � ³³· Õ Qy2�[23pxYu
pxYu<�Qy2�[<Ö  (68) 

Using the chain rule, equation 68 can be expanded into equation 69.     

³´µQ¶[³· =
� × �pxYu<�Qy2�[< ��� �Q? − �[ − D py�u� + �Q? − �[ − py�u D� ��� Õ �pxYu<�Qy2�[<ÖØ  

  (69) 

The first derivative of equation 69 is calculated and set equal to zero to determine the local 

maximum pin force shown in equation 70. 

³´µQ¶[³· = � ÙÕ 2�pxYu<�Qy2�[<Ö Ê1 − ÕwQy2�[�Qy2�[2pxYu3�
pxYu<�Qy2�[< ÖËÚ = 0  (70) 

Further reducing of equation 70, can be evaluated into equation 71 below. 

³´µQ¶[³· = 1 − ÕwQy2�[�Qy2�[2pxYu3�
pxYu<�Qy2�[< Ö = 0  (71) 
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A quadratic expression can be derived from equation 71, shown in equation 72. 

Q? − �[w − 2D py�u Q? − �[ − py�uw = 0  (72) 

Solving for (? − �) in equation 72 and subsequently ?, one obtains the position � of 

maximum pin force: 

� = ? − py�u pD ± ¸Dw + 1u  (73) 

Since � must be in the range [0,C], the final expression is give in equation 74.  

� = ? − py�u pD + ¸Dw + 1u  (74) 

As D (dependent on the sheet metal and die material) approaches zero, � = ? − py�u.  With 

the location of maximum pin force, we can substitute into the original 
�Q[ equation to 

obtain equation 75. 


�Q[,�]£ = � ∙ �pxYup3�¸3<��u�23pxYu
pxYu<��pxYup3�¸3<��u�<   (75) 

The final equation for maximum pin force applied to the die tooling for linear geometry: 


�Q[,�]£ = � p �wyu � �¸3<���3�  (76) 
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Appendix II. Moment Calculations for Female Die 

Table 8. Moment summary for contact point 1 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Lw (in.) 1 1 1 1 1 1 1

Lh (in.) 0.5 1 1.5 2 2.5 3 3.5

D (in.) 0 0.086 0.631 0.882 1.023 1.113 1.174

Fs (lb) 1023.7 1049.6 1235.1 1327.7 1378.2 1408.2 1427.3

Fc (lb) 409.5 434.8 661.0 820.5 933.1 1015.0 1076.6

M (lb in.) 102.4 614.8 1191.6 1834.8 2512.4 3209.6 3918.8

Contact point 1

 

Table 9. Moment summary for contact point 2 

Layer 4 Layer 5 Layer 6 Layer 7

Lw (in.) 0.75 1.25 4.75 4.75

Lh (in.) 0.5 1 1.5 2

D (in.) 0.174 0.287 0 0

Fs (lb) 3293.5 3709.1 2794.1 2794.1

Fc (lb) 997.2 1301.1 698.5 698.5

M (lb in.) 898.9 2082.8 873.2 2270.2

Contact point 2

 

Table 10. Moment summary for contact point 3 

Layer 4 Layer 5 Layer 6 Layer 7

Lw (in.) 0.375 0.500 3.500 3.500

Lh (in.) 0.5 1 1.5 2

D (in.) 0 0 0 0

Fs (lb) 1023.7 1023.7 1023.7 1023.7

Fc (lb) 1484.4 1484.4 1484.4 1484.4

M (lb in.) -44.8 281.5 -3659.8 -3147.9

Contact point 3
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Table 11. Moment summary for contact point 4 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Lw (in.) 1 1 1 1 1 1 1

Lh (in.) 0.5 1 1.5 2 2.5 3 3.5

D (in.) 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Fs (lb) 2417.5 2417.5 2417.5 2417.5 2417.5 2417.5 2417.5

Fc (lb) 1607.4 1607.4 1607.4 1607.4 1607.4 1607.4 1607.4

M (lb in.) -398.7 810.1 2018.8 3227.5 4436.3 5645.0 6853.7

Contact point 4
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Appendix III. Bolt Locations for Female Die  

Table 12. Female bolt coordinates (layers 1-4) 

RADIUS X Y

C1 0.339 0.661000 4.000000

C4 0.339 7.339000 4.000000

0.339 0.861000 2.136720

0.339 0.861000 4.273430

0.339 7.283060 2.167120

0.339 7.283060 4.334240

0.339 7.283060 6.167120

0.339 1.061000 1.863290

0.339 1.061000 2.931650

0.339 1.061000 4.000000

0.339 1.061000 6.000000

0.339 7.127350 1.000000

0.339 7.127350 2.500000

0.339 7.127350 4.000000

0.339 7.127350 4.933180

0.339 7.127350 5.866360

0.339 7.127350 6.933180

0.339 1.261000 1.589860

0.339 1.261000 3.726570

0.339 1.261000 5.726570

0.339 1.261000 6.863280

0.339 3.489000 1.000000

0.339 3.489000 2.000000

0.339 3.489000 3.000000

0.339 3.489000 4.000000

0.339 3.489000 5.000000

0.339 3.489000 6.000000

0.339 6.837020 0.825396

0.339 6.837020 1.369050

0.339 6.837020 1.912700

0.339 6.837020 2.869050

0.339 6.837020 3.825400

0.339 6.837020 4.466590

0.339 6.837020 5.107780

0.339 6.837020 6.040960

0.339 6.837020 7.107780

Layer 1

Layer 2

C1

C4

C4

C4

Layer 3

C1

C2

Layer 4

C1
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Table 13. Female bolt coordinates (layers 5-7) 

RADIUS X Y

0.339 1.461000 1.000000

0.339 1.461000 2.000000

0.339 1.461000 3.000000

0.339 1.461000 4.000000

0.339 1.461000 6.000000

0.339 3.464000 0.662092

0.339 3.464000 1.662090

0.339 3.464000 2.662090

0.339 3.464000 3.662090

0.339 3.464000 4.662090

0.339 3.464000 5.662090

0.339 3.464000 6.337910

0.339 3.464000 6.831040

0.339 3.464000 7.415520

0.339 6.336030 0.500000

0.339 6.336030 1.000000

0.339 6.336030 2.000000

0.339 6.336030 3.000000

0.339 6.336030 4.000000

0.339 6.336030 5.000000

0.339 6.336030 6.000000

0.339 6.336030 7.000000

0.339 7.661000 2.000000

0.339 7.661000 4.000000

0.339 0.339000 2.000000

0.339 0.339000 4.000000

0.339 7.661000 2.169500

0.339 7.661000 4.339000

0.339 0.339000 1.661000

0.339 0.339000 3.661000

0.339 0.339000 5.830500

Layer 5

C1

C2

C4

Layer 6

C4

C1

Layer 7

C1

C4
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Appendix IV. Pin Locations for Female Die 

Table 14. Female pin coordinates (layers 1-7) 

RADIUS X Y

0.1875 0.3390 2.0000

0.1875 7.6610 6.0000

0.1875 7.3419 1.8333

0.1875 0.6610 6.0000

0.1875 0.8610 1.7977

0.1875 0.3390 6.0000

0.1875 7.6610 2.0000

0.1875 7.2831 5.5656

0.1875 0.3390 2.0000

0.1875 1.0610 6.3390

0.1875 7.1306 1.7432

0.1875 7.6610 6.0000

0.1875 0.3390 1.0000

0.1875 1.2610 7.5000

0.1875 3.5656 0.3390

0.1875 3.5517 1.3346

0.1875 3.5517 2.3346

0.1875 3.5517 3.3346

0.1875 3.5517 4.3346

0.1875 3.6610 5.3864

0.1875 3.4640 5.3231

0.1875 3.6610 7.1398

0.1875 6.3360 2.0000

0.1875 7.6610 5.8125

0.1875 0.3390 3.0000

0.1875 1.2610 6.2734

0.1875 3.3390 0.3473

0.1875 3.3390 1.3473

0.1875 3.3390 2.3473

0.1875 3.3390 3.3473

0.1875 3.3390 4.3473

0.1875 3.3390 5.1836

0.1875 3.7037 6.5776

0.1875 3.7037 7.6552

0.1875 7.6610 2.3390

0.1875 4.8392 6.0000

0.1875 0.3390 1.0000

0.1875 7.6610 5.8125

0.1875 0.3390 2.3390

0.1875 7.6610 5.0000

Layer 6

Layer 7

C4

C1

C1

C4

C1

C4

C1

C2/C3

C4

C1

C2/C3

C4

Locating

Locating

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5
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Appendix V. Moment Calculations for Male Die 

Table 15. Moment summary for contact point 1 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Lw (in.) 1.125 1.25 4.791 4.949 5.000 6.000 6.000

Lh (in.) 0.5 1 1.5 2 2.5 3 3.5

D (in.) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fs (lb) 1023.7 1023.7 1023.7 1023.7 1023.7 1023.7 1023.7

Fc (lb) 409.5 409.5 409.5 409.5 409.5 409.5 409.5

M (lb in.) 51.2 511.9 -426.3 20.9 511.9 614.2 1126.1

Contact point 1

 

Table 16. Moment summary for contact point 2 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Lw (in.) 1.2 1.4 1.6 1.8 2.0 3.0 3.0

Lh (in.) 0.5 1 1.5 2 2.5 3 3.5

D (in.) 0.000 0.220 0.3678 0.43866 0.47984 0.396447 0.45644

Fs (lb) 2794.1 3451.1 4060.9 4413.3 4636.4 4198.447 4508.09

Fc (lb) 698.5 1106.0 1605.9 1965.5 2228.4 1739.053 2073.43

M (lb in.) 558.8 1902.8 3522.0 5288.7 7134.3 7378.179 9558.02

Contact point 2

 

Table 17. Moment summary for contact point 3 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Lw (in.) 1.500 2.000 2.291 2.449 2.500 3.500 3.500

Lh (in.) 0.5 1 1.5 2 2.5 3 3.5

D (in.) 0 0 0 0 0 0 0

Fs (lb) 1023.7 1023.7 1023.7 1023.7 1023.7 1023.7 1023.7

Fc (lb) 1484.4 1484.4 1484.4 1484.4 1484.4 1484.4 1484.4

M (lb in.) -1714.7 -1945.0 -1865.1 -1587.8 -1151.7 -2124.2 -1612.3

Contact point 3
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Table 18. Moment summary for contact point 4 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Lw (in.) 0.5 1.0 3.1 3.3 3.5 4.5 4.5

Lh (in.) 0.5 1 1.5 2 2.5 3 3.5

D (in.) 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Fs (lb) 2417.5 2417.5 2417.5 2417.5 2417.5 2417.5 2417.5

Fc (lb) 1607.4 1607.4 1607.4 1607.4 1607.4 1607.4 1607.4

M (lb in.) 405.0 810.1 -1356.7 -469.5 417.8 19.1 1227.8

Contact point 4
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Appendix VI. Bolt Locations for Male Die 

Table 19. Male bolt coordinates (layers 1 – 7) 

RADIUS X Y

0.339 2.661000 2.000000

0.339 2.661000 4.000000

C4 0.339 4.500000 4.000000

0.339 2.786000 1.157400

0.339 2.786000 2.314800

0.339 2.786000 3.200000

0.339 2.786000 4.314800

0.339 2.786000 5.236100

0.339 2.786000 6.157400

C4 0.339 5.658030 4.000000

0.339 6.250000 2.000000

0.339 6.250000 4.000000

0.339 6.500000 1.500000

0.339 6.500000 4.300760

0.339 6.500000 6.150380

0.339 6.605060 1.961760

0.339 6.605060 3.961760

0.339 6.605060 5.811380

0.339 6.605060 6.905690

0.339 7.661000 2.000000

0.339 7.661000 4.000000

0.339 7.661000 6.000000

0.339 7.661000 1.169500

0.339 7.661000 2.500000

0.339 7.661000 4.500000

0.339 7.661000 6.500000

Layer 1
C2

Layer 2
C2

Layer 3 C2

Layer 4 C2

Layer 6 C2

Layer 5

Layer 7

C2

C2
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Appendix VII. Pin Locations for Male Die 

Table 20. Male pin coordinates (layers 1 – 7) 

RADIUS X Y

0.1875 2.3390 0.5000

0.1875 2.6610 1.5000

0.1875 2.6610 2.6296

0.1875 2.6610 3.6296

0.1875 2.6610 4.6296

0.1875 2.6610 5.5000

0.1875 2.6610 6.5000

0.1875 2.3390 7.5000

0.1875 4.5000 1.0000

0.1875 4.5000 3.0000

0.1875 4.5000 5.0000

0.1875 4.5000 6.0000

0.1875 2.7860 0.5000

0.1875 2.1390 1.5000

0.1875 2.1390 2.5000

0.1875 2.1390 3.5000

0.1875 2.1390 4.5000

0.1875 2.1390 5.5000

0.1875 2.1390 6.5000

0.1875 2.7860 7.5000

0.1875 4.3390 0.5000

0.1875 5.6580 3.0000

0.1875 5.6580 5.0000

0.1875 4.3390 7.0000

0.1875 1.9390 1.0000

0.1875 6.1590 3.0000

0.1875 1.9390 5.0000

0.1875 6.1590 7.0000

0.1875 6.4494 1.0000

0.1875 1.7390 3.0000

0.1875 6.4494 5.0000

0.1875 1.7390 7.0000

0.1875 1.5390 1.0000

0.1875 6.6051 3.1043

0.1875 1.5390 5.0000
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